aboutsummaryrefslogtreecommitdiffstats
path: root/native/jni/src/binary_format.h
diff options
context:
space:
mode:
Diffstat (limited to 'native/jni/src/binary_format.h')
-rw-r--r--native/jni/src/binary_format.h562
1 files changed, 562 insertions, 0 deletions
diff --git a/native/jni/src/binary_format.h b/native/jni/src/binary_format.h
new file mode 100644
index 000000000..214ecfa8d
--- /dev/null
+++ b/native/jni/src/binary_format.h
@@ -0,0 +1,562 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef LATINIME_BINARY_FORMAT_H
+#define LATINIME_BINARY_FORMAT_H
+
+#include <limits>
+#include "bloom_filter.h"
+#include "unigram_dictionary.h"
+
+namespace latinime {
+
+class BinaryFormat {
+ private:
+ DISALLOW_IMPLICIT_CONSTRUCTORS(BinaryFormat);
+ const static int32_t MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
+ const static int32_t CHARACTER_ARRAY_TERMINATOR = 0x1F;
+ const static int MULTIPLE_BYTE_CHARACTER_ADDITIONAL_SIZE = 2;
+
+ public:
+ const static int UNKNOWN_FORMAT = -1;
+ // Originally, format version 1 had a 16-bit magic number, then the version number `01'
+ // then options that must be 0. Hence the first 32-bits of the format are always as follow
+ // and it's okay to consider them a magic number as a whole.
+ const static uint32_t FORMAT_VERSION_1_MAGIC_NUMBER = 0x78B10100;
+ const static unsigned int FORMAT_VERSION_1_HEADER_SIZE = 5;
+ // The versions of Latin IME that only handle format version 1 only test for the magic
+ // number, so we had to change it so that version 2 files would be rejected by older
+ // implementations. On this occasion, we made the magic number 32 bits long.
+ const static uint32_t FORMAT_VERSION_2_MAGIC_NUMBER = 0x9BC13AFE;
+
+ const static int CHARACTER_ARRAY_TERMINATOR_SIZE = 1;
+ const static int SHORTCUT_LIST_SIZE_SIZE = 2;
+
+ static int detectFormat(const uint8_t* const dict);
+ static unsigned int getHeaderSize(const uint8_t* const dict);
+ static unsigned int getFlags(const uint8_t* const dict);
+ static int getGroupCountAndForwardPointer(const uint8_t* const dict, int* pos);
+ static uint8_t getFlagsAndForwardPointer(const uint8_t* const dict, int* pos);
+ static int32_t getCharCodeAndForwardPointer(const uint8_t* const dict, int* pos);
+ static int readFrequencyWithoutMovingPointer(const uint8_t* const dict, const int pos);
+ static int skipOtherCharacters(const uint8_t* const dict, const int pos);
+ static int skipChildrenPosition(const uint8_t flags, const int pos);
+ static int skipFrequency(const uint8_t flags, const int pos);
+ static int skipShortcuts(const uint8_t* const dict, const uint8_t flags, const int pos);
+ static int skipBigrams(const uint8_t* const dict, const uint8_t flags, const int pos);
+ static int skipAllAttributes(const uint8_t* const dict, const uint8_t flags, const int pos);
+ static int skipChildrenPosAndAttributes(const uint8_t* const dict, const uint8_t flags,
+ const int pos);
+ static int readChildrenPosition(const uint8_t* const dict, const uint8_t flags, const int pos);
+ static bool hasChildrenInFlags(const uint8_t flags);
+ static int getAttributeAddressAndForwardPointer(const uint8_t* const dict, const uint8_t flags,
+ int *pos);
+ static int getTerminalPosition(const uint8_t* const root, const int32_t* const inWord,
+ const int length);
+ static int getWordAtAddress(const uint8_t* const root, const int address, const int maxDepth,
+ uint16_t* outWord, int* outUnigramFrequency);
+ static int computeFrequencyForBigram(const int unigramFreq, const int bigramFreq);
+ static int getProbability(const int position, const std::map<int, int> *bigramMap,
+ const uint8_t *bigramFilter, const int unigramFreq);
+
+ // Flags for special processing
+ // Those *must* match the flags in makedict (BinaryDictInputOutput#*_PROCESSING_FLAG) or
+ // something very bad (like, the apocalypse) will happen. Please update both at the same time.
+ enum {
+ REQUIRES_GERMAN_UMLAUT_PROCESSING = 0x1,
+ REQUIRES_FRENCH_LIGATURES_PROCESSING = 0x4
+ };
+ const static unsigned int NO_FLAGS = 0;
+};
+
+inline int BinaryFormat::detectFormat(const uint8_t* const dict) {
+ // The magic number is stored big-endian.
+ const uint32_t magicNumber = (dict[0] << 24) + (dict[1] << 16) + (dict[2] << 8) + dict[3];
+ switch (magicNumber) {
+ case FORMAT_VERSION_1_MAGIC_NUMBER:
+ // Format 1 header is exactly 5 bytes long and looks like:
+ // Magic number (2 bytes) 0x78 0xB1
+ // Version number (1 byte) 0x01
+ // Options (2 bytes) must be 0x00 0x00
+ return 1;
+ case FORMAT_VERSION_2_MAGIC_NUMBER:
+ // Format 2 header is as follows:
+ // Magic number (4 bytes) 0x9B 0xC1 0x3A 0xFE
+ // Version number (2 bytes) 0x00 0x02
+ // Options (2 bytes)
+ // Header size (4 bytes) : integer, big endian
+ return (dict[4] << 8) + dict[5];
+ default:
+ return UNKNOWN_FORMAT;
+ }
+}
+
+inline unsigned int BinaryFormat::getFlags(const uint8_t* const dict) {
+ switch (detectFormat(dict)) {
+ case 1:
+ return NO_FLAGS;
+ default:
+ return (dict[6] << 8) + dict[7];
+ }
+}
+
+inline unsigned int BinaryFormat::getHeaderSize(const uint8_t* const dict) {
+ switch (detectFormat(dict)) {
+ case 1:
+ return FORMAT_VERSION_1_HEADER_SIZE;
+ case 2:
+ // See the format of the header in the comment in detectFormat() above
+ return (dict[8] << 24) + (dict[9] << 16) + (dict[10] << 8) + dict[11];
+ default:
+ return std::numeric_limits<unsigned int>::max();
+ }
+}
+
+inline int BinaryFormat::getGroupCountAndForwardPointer(const uint8_t* const dict, int* pos) {
+ const int msb = dict[(*pos)++];
+ if (msb < 0x80) return msb;
+ return ((msb & 0x7F) << 8) | dict[(*pos)++];
+}
+
+inline uint8_t BinaryFormat::getFlagsAndForwardPointer(const uint8_t* const dict, int* pos) {
+ return dict[(*pos)++];
+}
+
+inline int32_t BinaryFormat::getCharCodeAndForwardPointer(const uint8_t* const dict, int* pos) {
+ const int origin = *pos;
+ const int32_t character = dict[origin];
+ if (character < MINIMAL_ONE_BYTE_CHARACTER_VALUE) {
+ if (character == CHARACTER_ARRAY_TERMINATOR) {
+ *pos = origin + 1;
+ return NOT_A_CHARACTER;
+ } else {
+ *pos = origin + 3;
+ const int32_t char_1 = character << 16;
+ const int32_t char_2 = char_1 + (dict[origin + 1] << 8);
+ return char_2 + dict[origin + 2];
+ }
+ } else {
+ *pos = origin + 1;
+ return character;
+ }
+}
+
+inline int BinaryFormat::readFrequencyWithoutMovingPointer(const uint8_t* const dict,
+ const int pos) {
+ return dict[pos];
+}
+
+inline int BinaryFormat::skipOtherCharacters(const uint8_t* const dict, const int pos) {
+ int currentPos = pos;
+ int32_t character = dict[currentPos++];
+ while (CHARACTER_ARRAY_TERMINATOR != character) {
+ if (character < MINIMAL_ONE_BYTE_CHARACTER_VALUE) {
+ currentPos += MULTIPLE_BYTE_CHARACTER_ADDITIONAL_SIZE;
+ }
+ character = dict[currentPos++];
+ }
+ return currentPos;
+}
+
+static inline int attributeAddressSize(const uint8_t flags) {
+ static const int ATTRIBUTE_ADDRESS_SHIFT = 4;
+ return (flags & UnigramDictionary::MASK_ATTRIBUTE_ADDRESS_TYPE) >> ATTRIBUTE_ADDRESS_SHIFT;
+ /* Note: this is a value-dependant optimization of what may probably be
+ more readably written this way:
+ switch (flags * UnigramDictionary::MASK_ATTRIBUTE_ADDRESS_TYPE) {
+ case UnigramDictionary::FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE: return 1;
+ case UnigramDictionary::FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES: return 2;
+ case UnigramDictionary::FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTE: return 3;
+ default: return 0;
+ }
+ */
+}
+
+static inline int skipExistingBigrams(const uint8_t* const dict, const int pos) {
+ int currentPos = pos;
+ uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(dict, &currentPos);
+ while (flags & UnigramDictionary::FLAG_ATTRIBUTE_HAS_NEXT) {
+ currentPos += attributeAddressSize(flags);
+ flags = BinaryFormat::getFlagsAndForwardPointer(dict, &currentPos);
+ }
+ currentPos += attributeAddressSize(flags);
+ return currentPos;
+}
+
+static inline int childrenAddressSize(const uint8_t flags) {
+ static const int CHILDREN_ADDRESS_SHIFT = 6;
+ return (UnigramDictionary::MASK_GROUP_ADDRESS_TYPE & flags) >> CHILDREN_ADDRESS_SHIFT;
+ /* See the note in attributeAddressSize. The same applies here */
+}
+
+static inline int shortcutByteSize(const uint8_t* const dict, const int pos) {
+ return ((int)(dict[pos] << 8)) + (dict[pos + 1]);
+}
+
+inline int BinaryFormat::skipChildrenPosition(const uint8_t flags, const int pos) {
+ return pos + childrenAddressSize(flags);
+}
+
+inline int BinaryFormat::skipFrequency(const uint8_t flags, const int pos) {
+ return UnigramDictionary::FLAG_IS_TERMINAL & flags ? pos + 1 : pos;
+}
+
+inline int BinaryFormat::skipShortcuts(const uint8_t* const dict, const uint8_t flags,
+ const int pos) {
+ if (UnigramDictionary::FLAG_HAS_SHORTCUT_TARGETS & flags) {
+ return pos + shortcutByteSize(dict, pos);
+ } else {
+ return pos;
+ }
+}
+
+inline int BinaryFormat::skipBigrams(const uint8_t* const dict, const uint8_t flags,
+ const int pos) {
+ if (UnigramDictionary::FLAG_HAS_BIGRAMS & flags) {
+ return skipExistingBigrams(dict, pos);
+ } else {
+ return pos;
+ }
+}
+
+inline int BinaryFormat::skipAllAttributes(const uint8_t* const dict, const uint8_t flags,
+ const int pos) {
+ // This function skips all attributes: shortcuts and bigrams.
+ int newPos = pos;
+ newPos = skipShortcuts(dict, flags, newPos);
+ newPos = skipBigrams(dict, flags, newPos);
+ return newPos;
+}
+
+inline int BinaryFormat::skipChildrenPosAndAttributes(const uint8_t* const dict,
+ const uint8_t flags, const int pos) {
+ int currentPos = pos;
+ currentPos = skipChildrenPosition(flags, currentPos);
+ currentPos = skipAllAttributes(dict, flags, currentPos);
+ return currentPos;
+}
+
+inline int BinaryFormat::readChildrenPosition(const uint8_t* const dict, const uint8_t flags,
+ const int pos) {
+ int offset = 0;
+ switch (UnigramDictionary::MASK_GROUP_ADDRESS_TYPE & flags) {
+ case UnigramDictionary::FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
+ offset = dict[pos];
+ break;
+ case UnigramDictionary::FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
+ offset = dict[pos] << 8;
+ offset += dict[pos + 1];
+ break;
+ case UnigramDictionary::FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
+ offset = dict[pos] << 16;
+ offset += dict[pos + 1] << 8;
+ offset += dict[pos + 2];
+ break;
+ default:
+ // If we come here, it means we asked for the children of a word with
+ // no children.
+ return -1;
+ }
+ return pos + offset;
+}
+
+inline bool BinaryFormat::hasChildrenInFlags(const uint8_t flags) {
+ return (UnigramDictionary::FLAG_GROUP_ADDRESS_TYPE_NOADDRESS
+ != (UnigramDictionary::MASK_GROUP_ADDRESS_TYPE & flags));
+}
+
+inline int BinaryFormat::getAttributeAddressAndForwardPointer(const uint8_t* const dict,
+ const uint8_t flags, int *pos) {
+ int offset = 0;
+ const int origin = *pos;
+ switch (UnigramDictionary::MASK_ATTRIBUTE_ADDRESS_TYPE & flags) {
+ case UnigramDictionary::FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
+ offset = dict[origin];
+ *pos = origin + 1;
+ break;
+ case UnigramDictionary::FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
+ offset = dict[origin] << 8;
+ offset += dict[origin + 1];
+ *pos = origin + 2;
+ break;
+ case UnigramDictionary::FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
+ offset = dict[origin] << 16;
+ offset += dict[origin + 1] << 8;
+ offset += dict[origin + 2];
+ *pos = origin + 3;
+ break;
+ }
+ if (UnigramDictionary::FLAG_ATTRIBUTE_OFFSET_NEGATIVE & flags) {
+ return origin - offset;
+ } else {
+ return origin + offset;
+ }
+}
+
+// This function gets the byte position of the last chargroup of the exact matching word in the
+// dictionary. If no match is found, it returns NOT_VALID_WORD.
+inline int BinaryFormat::getTerminalPosition(const uint8_t* const root,
+ const int32_t* const inWord, const int length) {
+ int pos = 0;
+ int wordPos = 0;
+
+ while (true) {
+ // If we already traversed the tree further than the word is long, there means
+ // there was no match (or we would have found it).
+ if (wordPos > length) return NOT_VALID_WORD;
+ int charGroupCount = BinaryFormat::getGroupCountAndForwardPointer(root, &pos);
+ const int32_t wChar = inWord[wordPos];
+ while (true) {
+ // If there are no more character groups in this node, it means we could not
+ // find a matching character for this depth, therefore there is no match.
+ if (0 >= charGroupCount) return NOT_VALID_WORD;
+ const int charGroupPos = pos;
+ const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
+ int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ if (character == wChar) {
+ // This is the correct node. Only one character group may start with the same
+ // char within a node, so either we found our match in this node, or there is
+ // no match and we can return NOT_VALID_WORD. So we will check all the characters
+ // in this character group indeed does match.
+ if (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags) {
+ character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ while (NOT_A_CHARACTER != character) {
+ ++wordPos;
+ // If we shoot the length of the word we search for, or if we find a single
+ // character that does not match, as explained above, it means the word is
+ // not in the dictionary (by virtue of this chargroup being the only one to
+ // match the word on the first character, but not matching the whole word).
+ if (wordPos > length) return NOT_VALID_WORD;
+ if (inWord[wordPos] != character) return NOT_VALID_WORD;
+ character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ }
+ }
+ // If we come here we know that so far, we do match. Either we are on a terminal
+ // and we match the length, in which case we found it, or we traverse children.
+ // If we don't match the length AND don't have children, then a word in the
+ // dictionary fully matches a prefix of the searched word but not the full word.
+ ++wordPos;
+ if (UnigramDictionary::FLAG_IS_TERMINAL & flags) {
+ if (wordPos == length) {
+ return charGroupPos;
+ }
+ pos = BinaryFormat::skipFrequency(UnigramDictionary::FLAG_IS_TERMINAL, pos);
+ }
+ if (UnigramDictionary::FLAG_GROUP_ADDRESS_TYPE_NOADDRESS
+ == (UnigramDictionary::MASK_GROUP_ADDRESS_TYPE & flags)) {
+ return NOT_VALID_WORD;
+ }
+ // We have children and we are still shorter than the word we are searching for, so
+ // we need to traverse children. Put the pointer on the children position, and
+ // break
+ pos = BinaryFormat::readChildrenPosition(root, flags, pos);
+ break;
+ } else {
+ // This chargroup does not match, so skip the remaining part and go to the next.
+ if (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags) {
+ pos = BinaryFormat::skipOtherCharacters(root, pos);
+ }
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ pos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
+ }
+ --charGroupCount;
+ }
+ }
+}
+
+// This function searches for a terminal in the dictionary by its address.
+// Due to the fact that words are ordered in the dictionary in a strict breadth-first order,
+// it is possible to check for this with advantageous complexity. For each node, we search
+// for groups with children and compare the children address with the address we look for.
+// When we shoot the address we look for, it means the word we look for is in the children
+// of the previous group. The only tricky part is the fact that if we arrive at the end of a
+// node with the last group's children address still less than what we are searching for, we
+// must descend the last group's children (for example, if the word we are searching for starts
+// with a z, it's the last group of the root node, so all children addresses will be smaller
+// than the address we look for, and we have to descend the z node).
+/* Parameters :
+ * root: the dictionary buffer
+ * address: the byte position of the last chargroup of the word we are searching for (this is
+ * what is stored as the "bigram address" in each bigram)
+ * outword: an array to write the found word, with MAX_WORD_LENGTH size.
+ * outUnigramFrequency: a pointer to an int to write the frequency into.
+ * Return value : the length of the word, of 0 if the word was not found.
+ */
+inline int BinaryFormat::getWordAtAddress(const uint8_t* const root, const int address,
+ const int maxDepth, uint16_t* outWord, int* outUnigramFrequency) {
+ int pos = 0;
+ int wordPos = 0;
+
+ // One iteration of the outer loop iterates through nodes. As stated above, we will only
+ // traverse nodes that are actually a part of the terminal we are searching, so each time
+ // we enter this loop we are one depth level further than last time.
+ // The only reason we count nodes is because we want to reduce the probability of infinite
+ // looping in case there is a bug. Since we know there is an upper bound to the depth we are
+ // supposed to traverse, it does not hurt to count iterations.
+ for (int loopCount = maxDepth; loopCount > 0; --loopCount) {
+ int lastCandidateGroupPos = 0;
+ // Let's loop through char groups in this node searching for either the terminal
+ // or one of its ascendants.
+ for (int charGroupCount = getGroupCountAndForwardPointer(root, &pos); charGroupCount > 0;
+ --charGroupCount) {
+ const int startPos = pos;
+ const uint8_t flags = getFlagsAndForwardPointer(root, &pos);
+ const int32_t character = getCharCodeAndForwardPointer(root, &pos);
+ if (address == startPos) {
+ // We found the address. Copy the rest of the word in the buffer and return
+ // the length.
+ outWord[wordPos] = character;
+ if (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags) {
+ int32_t nextChar = getCharCodeAndForwardPointer(root, &pos);
+ // We count chars in order to avoid infinite loops if the file is broken or
+ // if there is some other bug
+ int charCount = maxDepth;
+ while (NOT_A_CHARACTER != nextChar && --charCount > 0) {
+ outWord[++wordPos] = nextChar;
+ nextChar = getCharCodeAndForwardPointer(root, &pos);
+ }
+ }
+ *outUnigramFrequency = readFrequencyWithoutMovingPointer(root, pos);
+ return ++wordPos;
+ }
+ // We need to skip past this char group, so skip any remaining chars after the
+ // first and possibly the frequency.
+ if (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags) {
+ pos = skipOtherCharacters(root, pos);
+ }
+ pos = skipFrequency(flags, pos);
+
+ // The fact that this group has children is very important. Since we already know
+ // that this group does not match, if it has no children we know it is irrelevant
+ // to what we are searching for.
+ const bool hasChildren = (UnigramDictionary::FLAG_GROUP_ADDRESS_TYPE_NOADDRESS !=
+ (UnigramDictionary::MASK_GROUP_ADDRESS_TYPE & flags));
+ // We will write in `found' whether we have passed the children address we are
+ // searching for. For example if we search for "beer", the children of b are less
+ // than the address we are searching for and the children of c are greater. When we
+ // come here for c, we realize this is too big, and that we should descend b.
+ bool found;
+ if (hasChildren) {
+ // Here comes the tricky part. First, read the children position.
+ const int childrenPos = readChildrenPosition(root, flags, pos);
+ if (childrenPos > address) {
+ // If the children pos is greater than address, it means the previous chargroup,
+ // which address is stored in lastCandidateGroupPos, was the right one.
+ found = true;
+ } else if (1 >= charGroupCount) {
+ // However if we are on the LAST group of this node, and we have NOT shot the
+ // address we should descend THIS node. So we trick the lastCandidateGroupPos
+ // so that we will descend this node, not the previous one.
+ lastCandidateGroupPos = startPos;
+ found = true;
+ } else {
+ // Else, we should continue looking.
+ found = false;
+ }
+ } else {
+ // Even if we don't have children here, we could still be on the last group of this
+ // node. If this is the case, we should descend the last group that had children,
+ // and their address is already in lastCandidateGroup.
+ found = (1 >= charGroupCount);
+ }
+
+ if (found) {
+ // Okay, we found the group we should descend. Its address is in
+ // the lastCandidateGroupPos variable, so we just re-read it.
+ if (0 != lastCandidateGroupPos) {
+ const uint8_t lastFlags =
+ getFlagsAndForwardPointer(root, &lastCandidateGroupPos);
+ const int32_t lastChar =
+ getCharCodeAndForwardPointer(root, &lastCandidateGroupPos);
+ // We copy all the characters in this group to the buffer
+ outWord[wordPos] = lastChar;
+ if (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & lastFlags) {
+ int32_t nextChar =
+ getCharCodeAndForwardPointer(root, &lastCandidateGroupPos);
+ int charCount = maxDepth;
+ while (-1 != nextChar && --charCount > 0) {
+ outWord[++wordPos] = nextChar;
+ nextChar = getCharCodeAndForwardPointer(root, &lastCandidateGroupPos);
+ }
+ }
+ ++wordPos;
+ // Now we only need to branch to the children address. Skip the frequency if
+ // it's there, read pos, and break to resume the search at pos.
+ lastCandidateGroupPos = skipFrequency(lastFlags, lastCandidateGroupPos);
+ pos = readChildrenPosition(root, lastFlags, lastCandidateGroupPos);
+ break;
+ } else {
+ // Here is a little tricky part: we come here if we found out that all children
+ // addresses in this group are bigger than the address we are searching for.
+ // Should we conclude the word is not in the dictionary? No! It could still be
+ // one of the remaining chargroups in this node, so we have to keep looking in
+ // this node until we find it (or we realize it's not there either, in which
+ // case it's actually not in the dictionary). Pass the end of this group, ready
+ // to start the next one.
+ pos = skipChildrenPosAndAttributes(root, flags, pos);
+ }
+ } else {
+ // If we did not find it, we should record the last children address for the next
+ // iteration.
+ if (hasChildren) lastCandidateGroupPos = startPos;
+ // Now skip the end of this group (children pos and the attributes if any) so that
+ // our pos is after the end of this char group, at the start of the next one.
+ pos = skipChildrenPosAndAttributes(root, flags, pos);
+ }
+
+ }
+ }
+ // If we have looked through all the chargroups and found no match, the address is
+ // not the address of a terminal in this dictionary.
+ return 0;
+}
+
+static inline int backoff(const int unigramFreq) {
+ return unigramFreq;
+ // For some reason, applying the backoff weight gives bad results in tests. To apply the
+ // backoff weight, we divide the probability by 2, which in our storing format means
+ // decreasing the score by 8.
+ // TODO: figure out what's wrong with this.
+ // return unigramFreq > 8 ? unigramFreq - 8 : (0 == unigramFreq ? 0 : 8);
+}
+
+inline int BinaryFormat::computeFrequencyForBigram(const int unigramFreq, const int bigramFreq) {
+ // We divide the range [unigramFreq..255] in 16.5 steps - in other words, we want the
+ // unigram frequency to be the median value of the 17th step from the top. A value of
+ // 0 for the bigram frequency represents the middle of the 16th step from the top,
+ // while a value of 15 represents the middle of the top step.
+ // See makedict.BinaryDictInputOutput for details.
+ const float stepSize = ((float)MAX_FREQ - unigramFreq) / (1.5f + MAX_BIGRAM_FREQ);
+ return (int)(unigramFreq + (bigramFreq + 1) * stepSize);
+}
+
+// This returns a probability in log space.
+inline int BinaryFormat::getProbability(const int position, const std::map<int, int> *bigramMap,
+ const uint8_t *bigramFilter, const int unigramFreq) {
+ if (!bigramMap || !bigramFilter) return backoff(unigramFreq);
+ if (!isInFilter(bigramFilter, position)) return backoff(unigramFreq);
+ const std::map<int, int>::const_iterator bigramFreqIt = bigramMap->find(position);
+ if (bigramFreqIt != bigramMap->end()) {
+ const int bigramFreq = bigramFreqIt->second;
+ return computeFrequencyForBigram(unigramFreq, bigramFreq);
+ } else {
+ return backoff(unigramFreq);
+ }
+}
+
+} // namespace latinime
+
+#endif // LATINIME_BINARY_FORMAT_H