aboutsummaryrefslogtreecommitdiffstats
path: root/native/jni/src/proximity_info_state.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'native/jni/src/proximity_info_state.cpp')
-rw-r--r--native/jni/src/proximity_info_state.cpp560
1 files changed, 362 insertions, 198 deletions
diff --git a/native/jni/src/proximity_info_state.cpp b/native/jni/src/proximity_info_state.cpp
index 90e3671eb..0f7e4d65f 100644
--- a/native/jni/src/proximity_info_state.cpp
+++ b/native/jni/src/proximity_info_state.cpp
@@ -105,6 +105,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
mLengthCache.clear();
mDistanceCache.clear();
mNearKeysVector.clear();
+ mSearchKeysVector.clear();
mRelativeSpeeds.clear();
mCharProbabilities.clear();
}
@@ -132,6 +133,10 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
NearKeysDistanceMap *currentNearKeysDistances = &nearKeysDistances[0];
NearKeysDistanceMap *prevNearKeysDistances = &nearKeysDistances[1];
NearKeysDistanceMap *prevPrevNearKeysDistances = &nearKeysDistances[2];
+ // "sumAngle" is accumulated by each angle of input points. And when "sumAngle" exceeds
+ // the threshold we save that point, reset sumAngle. This aims to keep the figure of
+ // the curve.
+ float sumAngle = 0.0f;
for (int i = pushTouchPointStartIndex; i <= lastInputIndex; ++i) {
// Assuming pointerId == 0 if pointerIds is null.
@@ -144,9 +149,18 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
const int x = proximityOnly ? NOT_A_COORDINATE : xCoordinates[i];
const int y = proximityOnly ? NOT_A_COORDINATE : yCoordinates[i];
const int time = times ? times[i] : -1;
+
+ if (i > 1) {
+ const float prevAngle = getAngle(xCoordinates[i - 2], yCoordinates[i - 2],
+ xCoordinates[i - 1], yCoordinates[i - 1]);
+ const float currentAngle =
+ getAngle(xCoordinates[i - 1], yCoordinates[i - 1], x, y);
+ sumAngle += getAngleDiff(prevAngle, currentAngle);
+ }
+
if (pushTouchPoint(i, c, x, y, time, isGeometric /* do sampling */,
- i == lastInputIndex, currentNearKeysDistances, prevNearKeysDistances,
- prevPrevNearKeysDistances)) {
+ i == lastInputIndex, sumAngle, currentNearKeysDistances,
+ prevNearKeysDistances, prevPrevNearKeysDistances)) {
// Previous point information was popped.
NearKeysDistanceMap *tmp = prevNearKeysDistances;
prevNearKeysDistances = currentNearKeysDistances;
@@ -156,6 +170,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
prevPrevNearKeysDistances = prevNearKeysDistances;
prevNearKeysDistances = currentNearKeysDistances;
currentNearKeysDistances = tmp;
+ sumAngle = 0.0f;
}
}
}
@@ -163,6 +178,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
}
if (mInputSize > 0 && isGeometric) {
+ // Relative speed calculation.
const int sumDuration = mTimes.back() - mTimes.front();
const int sumLength = mLengthCache.back() - mLengthCache.front();
const float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration);
@@ -174,7 +190,7 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
// Calculate velocity by using distances and durations of
// NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and backward.
- static const int NUM_POINTS_FOR_SPEED_CALCULATION = 1;
+ static const int NUM_POINTS_FOR_SPEED_CALCULATION = 2;
for (int j = index; j < min(inputSize - 1, index + NUM_POINTS_FOR_SPEED_CALCULATION);
++j) {
if (i < mInputSize - 1 && j >= mInputIndice[i + 1]) {
@@ -202,12 +218,21 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
}
}
+ if (DEBUG_GEO_FULL) {
+ for (int i = 0; i < mInputSize; ++i) {
+ AKLOGI("Sampled(%d): x = %d, y = %d, time = %d", i, mInputXs[i], mInputYs[i],
+ mTimes[i]);
+ }
+ }
+
if (mInputSize > 0) {
const int keyCount = mProximityInfo->getKeyCount();
mNearKeysVector.resize(mInputSize);
+ mSearchKeysVector.resize(mInputSize);
mDistanceCache.resize(mInputSize * keyCount);
for (int i = lastSavedInputSize; i < mInputSize; ++i) {
mNearKeysVector[i].reset();
+ mSearchKeysVector[i].reset();
static const float NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD = 4.0f;
for (int k = 0; k < keyCount; ++k) {
const int index = i * keyCount + k;
@@ -217,25 +242,28 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
mProximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y);
mDistanceCache[index] = normalizedSquaredDistance;
if (normalizedSquaredDistance < NEAR_KEY_NORMALIZED_SQUARED_THRESHOLD) {
- mNearKeysVector[i].set(k, 1);
+ mNearKeysVector[i][k] = true;
}
}
}
-
- static const float READ_FORWORD_LENGTH_SCALE = 0.95f;
- const int readForwordLength = static_cast<int>(
- hypotf(mProximityInfo->getKeyboardWidth(), mProximityInfo->getKeyboardHeight())
- * READ_FORWORD_LENGTH_SCALE);
- for (int i = 0; i < mInputSize; ++i) {
- if (DEBUG_GEO_FULL) {
- AKLOGI("Sampled(%d): x = %d, y = %d, time = %d", i, mInputXs[i], mInputYs[i],
- mTimes[i]);
- }
- for (int j = max(i + 1, lastSavedInputSize); j < mInputSize; ++j) {
- if (mLengthCache[j] - mLengthCache[i] >= readForwordLength) {
- break;
+ if (isGeometric) {
+ // updates probabilities of skipping or mapping each key for all points.
+ updateAlignPointProbabilities(lastSavedInputSize);
+
+ static const float READ_FORWORD_LENGTH_SCALE = 0.95f;
+ const int readForwordLength = static_cast<int>(
+ hypotf(mProximityInfo->getKeyboardWidth(), mProximityInfo->getKeyboardHeight())
+ * READ_FORWORD_LENGTH_SCALE);
+ for (int i = 0; i < mInputSize; ++i) {
+ if (i >= lastSavedInputSize) {
+ mSearchKeysVector[i].reset();
+ }
+ for (int j = max(i, lastSavedInputSize); j < mInputSize; ++j) {
+ if (mLengthCache[j] - mLengthCache[i] >= readForwordLength) {
+ break;
+ }
+ mSearchKeysVector[i] |= mNearKeysVector[j];
}
- mNearKeysVector[i] |= mNearKeysVector[j];
}
}
}
@@ -307,10 +335,6 @@ void ProximityInfoState::initInputParams(const int pointerId, const float maxPoi
if (DEBUG_GEO_FULL) {
AKLOGI("ProximityState init finished: %d points out of %d", mInputSize, inputSize);
}
- if (isGeometric && mInputSize > 0) {
- // updates probabilities of skipping or mapping each key for all points.
- updateAlignPointProbabilities();
- }
}
bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSize,
@@ -329,7 +353,7 @@ bool ProximityInfoState::checkAndReturnIsContinuationPossible(const int inputSiz
// the given point and the nearest key position.
float ProximityInfoState::updateNearKeysDistances(const int x, const int y,
NearKeysDistanceMap *const currentNearKeysDistances) {
- static const float NEAR_KEY_THRESHOLD = 1.7f;
+ static const float NEAR_KEY_THRESHOLD = 2.0f;
currentNearKeysDistances->clear();
const int keyCount = mProximityInfo->getKeyCount();
@@ -350,7 +374,7 @@ float ProximityInfoState::updateNearKeysDistances(const int x, const int y,
bool ProximityInfoState::isPrevLocalMin(const NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances) const {
- static const float MARGIN = 0.03f;
+ static const float MARGIN = 0.01f;
for (NearKeysDistanceMap::const_iterator it = prevNearKeysDistances->begin();
it != prevNearKeysDistances->end(); ++it) {
@@ -367,69 +391,49 @@ bool ProximityInfoState::isPrevLocalMin(const NearKeysDistanceMap *const current
// Calculating a point score that indicates usefulness of the point.
float ProximityInfoState::getPointScore(
const int x, const int y, const int time, const bool lastPoint, const float nearest,
- const NearKeysDistanceMap *const currentNearKeysDistances,
+ const float sumAngle, const NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances) const {
static const int DISTANCE_BASE_SCALE = 100;
- static const int SAVE_DISTANCE_SCALE = 500;
- static const int SKIP_DISTANCE_SCALE = 10;
- static const float NEAR_KEY_THRESHOLD = 1.0f;
- static const int CHECK_LOCALMIN_DISTANCE_THRESHOLD_SCALE = 100;
- static const int STRAIGHT_SKIP_DISTANCE_THRESHOLD_SCALE = 200;
- static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 20;
- static const float SAVE_DISTANCE_SCORE = 2.0f;
- static const float SKIP_DISTANCE_SCORE = -1.0f;
+ static const float NEAR_KEY_THRESHOLD = 0.6f;
+ static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 25;
static const float NOT_LOCALMIN_DISTANCE_SCORE = -1.0f;
- static const float LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE = 2.0f;
- static const float STRAIGHT_ANGLE_THRESHOLD = M_PI_F / 36.0f;
- static const float STRAIGHT_SKIP_NEAREST_DISTANCE_THRESHOLD = 0.5f;
- static const float STRAIGHT_SKIP_SCORE = -1.0f;
- static const float CORNER_ANGLE_THRESHOLD = M_PI_F / 6.0f;
+ static const float LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE = 1.0f;
+ static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 2.0f / 3.0f;
+ static const float CORNER_SUM_ANGLE_THRESHOLD = M_PI_F / 4.0f;
static const float CORNER_SCORE = 1.0f;
- const std::size_t size = mInputXs.size();
- if (size <= 1) {
+ const size_t size = mInputXs.size();
+ // If there is only one point, add this point. Besides, if the previous point's distance map
+ // is empty, we re-compute nearby keys distances from the current point.
+ // Note that the current point is the first point in the incremental input that needs to
+ // be re-computed.
+ if (size <= 1 || prevNearKeysDistances->empty()) {
return 0.0f;
}
+
const int baseSampleRate = mProximityInfo->getMostCommonKeyWidth();
- const int distNext = getDistanceInt(x, y, mInputXs.back(), mInputYs.back())
- * DISTANCE_BASE_SCALE;
const int distPrev = getDistanceInt(mInputXs.back(), mInputYs.back(),
mInputXs[size - 2], mInputYs[size - 2]) * DISTANCE_BASE_SCALE;
float score = 0.0f;
- // Sum of distances
- if (distPrev + distNext > baseSampleRate * SAVE_DISTANCE_SCALE) {
- score += SAVE_DISTANCE_SCORE;
- }
- // Distance
- if (distPrev < baseSampleRate * SKIP_DISTANCE_SCALE) {
- score += SKIP_DISTANCE_SCORE;
- }
// Location
- if (distPrev < baseSampleRate * CHECK_LOCALMIN_DISTANCE_THRESHOLD_SCALE) {
- if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances,
- prevPrevNearKeysDistances)) {
- score += NOT_LOCALMIN_DISTANCE_SCORE;
- } else if (nearest < NEAR_KEY_THRESHOLD) {
- // Promote points nearby keys
- score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
- }
+ if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances,
+ prevPrevNearKeysDistances)) {
+ score += NOT_LOCALMIN_DISTANCE_SCORE;
+ } else if (nearest < NEAR_KEY_THRESHOLD) {
+ // Promote points nearby keys
+ score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE;
}
// Angle
const float angle1 = getAngle(x, y, mInputXs.back(), mInputYs.back());
const float angle2 = getAngle(mInputXs.back(), mInputYs.back(),
mInputXs[size - 2], mInputYs[size - 2]);
const float angleDiff = getAngleDiff(angle1, angle2);
- // Skip straight
- if (nearest > STRAIGHT_SKIP_NEAREST_DISTANCE_THRESHOLD
- && distPrev < baseSampleRate * STRAIGHT_SKIP_DISTANCE_THRESHOLD_SCALE
- && angleDiff < STRAIGHT_ANGLE_THRESHOLD) {
- score += STRAIGHT_SKIP_SCORE;
- }
+
// Save corner
if (distPrev > baseSampleRate * CORNER_CHECK_DISTANCE_THRESHOLD_SCALE
- && angleDiff > CORNER_ANGLE_THRESHOLD) {
+ && (sumAngle > CORNER_SUM_ANGLE_THRESHOLD || angleDiff > CORNER_ANGLE_THRESHOLD)) {
score += CORNER_SCORE;
}
return score;
@@ -438,18 +442,17 @@ float ProximityInfoState::getPointScore(
// Sampling touch point and pushing information to vectors.
// Returning if previous point is popped or not.
bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeChar, int x, int y,
- const int time, const bool sample, const bool isLastPoint,
+ const int time, const bool sample, const bool isLastPoint, const float sumAngle,
NearKeysDistanceMap *const currentNearKeysDistances,
const NearKeysDistanceMap *const prevNearKeysDistances,
const NearKeysDistanceMap *const prevPrevNearKeysDistances) {
static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4;
- static const int LAST_AND_NOT_NEAREST_POINT_SKIP_DISTANCE_SCALE = 2;
size_t size = mInputXs.size();
bool popped = false;
if (nodeChar < 0 && sample) {
const float nearest = updateNearKeysDistances(x, y, currentNearKeysDistances);
- const float score = getPointScore(x, y, time, isLastPoint, nearest,
+ const float score = getPointScore(x, y, time, isLastPoint, nearest, sumAngle,
currentNearKeysDistances, prevNearKeysDistances, prevPrevNearKeysDistances);
if (score < 0) {
// Pop previous point because it would be useless.
@@ -461,9 +464,8 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeChar
}
// Check if the last point should be skipped.
if (isLastPoint && size > 0) {
- const int lastPointsDistance = getDistanceInt(x, y, mInputXs.back(), mInputYs.back());
- if (lastPointsDistance * LAST_POINT_SKIP_DISTANCE_SCALE
- < mProximityInfo->getMostCommonKeyWidth()) {
+ if (getDistanceInt(x, y, mInputXs.back(), mInputYs.back())
+ * LAST_POINT_SKIP_DISTANCE_SCALE < mProximityInfo->getMostCommonKeyWidth()) {
// This point is not used because it's too close to the previous point.
if (DEBUG_GEO_FULL) {
AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, "
@@ -473,28 +475,6 @@ bool ProximityInfoState::pushTouchPoint(const int inputIndex, const int nodeChar
/ LAST_POINT_SKIP_DISTANCE_SCALE);
}
return popped;
- } else if (lastPointsDistance * LAST_AND_NOT_NEAREST_POINT_SKIP_DISTANCE_SCALE
- < mProximityInfo->getMostCommonKeyWidth()) {
- int nearestChar = 0;
- float nearestCharDistance = mMaxPointToKeyLength;
- for (NearKeysDistanceMap::const_iterator it = currentNearKeysDistances->begin();
- it != currentNearKeysDistances->end(); ++it) {
- if (nearestCharDistance > it->second) {
- nearestChar = it->first;
- nearestCharDistance = it->second;
- }
- }
- NearKeysDistanceMap::const_iterator itPP =
- prevNearKeysDistances->find(nearestChar);
- if (itPP != prevNearKeysDistances->end() && nearestCharDistance > itPP->second) {
- // The nearest key of the penultimate point is same as the nearest key of the
- // last point. So, we don't need to use the last point.
- if (DEBUG_GEO_FULL) {
- AKLOGI("p1: char = %c, minDist = %f, prevNear key minDist = %f",
- nearestChar, itPP->second, nearestCharDistance);
- }
- return popped;
- }
}
}
}
@@ -550,11 +530,16 @@ int ProximityInfoState::getDuration(const int index) const {
}
float ProximityInfoState::getPointToKeyLength(const int inputIndex, const int codePoint) const {
+ const int keyId = mProximityInfo->getKeyIndexOf(codePoint);
+ if (keyId != NOT_AN_INDEX) {
+ const int index = inputIndex * mProximityInfo->getKeyCount() + keyId;
+ return min(mDistanceCache[index], mMaxPointToKeyLength);
+ }
if (isSkippableChar(codePoint)) {
return 0.0f;
}
- const int keyId = mProximityInfo->getKeyIndexOf(codePoint);
- return getPointToKeyByIdLength(inputIndex, keyId);
+ // If the char is not a key on the keyboard then return the max length.
+ return MAX_POINT_TO_KEY_LENGTH;
}
float ProximityInfoState::getPointToKeyByIdLength(const int inputIndex, const int keyId) const {
@@ -587,8 +572,9 @@ int32_t ProximityInfoState::getAllPossibleChars(
return filterSize;
}
int newFilterSize = filterSize;
- for (int j = 0; j < mProximityInfo->getKeyCount(); ++j) {
- if (mNearKeysVector[index].test(j)) {
+ const int keyCount = mProximityInfo->getKeyCount();
+ for (int j = 0; j < keyCount; ++j) {
+ if (mSearchKeysVector[index].test(j)) {
const int32_t keyCodePoint = mProximityInfo->getCodePointOf(j);
bool insert = true;
// TODO: Avoid linear search
@@ -606,6 +592,12 @@ int32_t ProximityInfoState::getAllPossibleChars(
return newFilterSize;
}
+bool ProximityInfoState::isKeyInSerchKeysAfterIndex(const int index, const int keyId) const {
+ ASSERT(keyId >= 0);
+ ASSERT(index >= 0 && index < mInputSize);
+ return mSearchKeysVector[index].test(keyId);
+}
+
void ProximityInfoState::popInputData() {
mInputXs.pop_back();
mInputYs.pop_back();
@@ -614,18 +606,26 @@ void ProximityInfoState::popInputData() {
mInputIndice.pop_back();
}
+float ProximityInfoState::getDirection(const int index0, const int index1) const {
+ if (index0 < 0 || index0 > mInputSize - 1) {
+ return 0.0f;
+ }
+ if (index1 < 0 || index1 > mInputSize - 1) {
+ return 0.0f;
+ }
+ const int x1 = mInputXs[index0];
+ const int y1 = mInputYs[index0];
+ const int x2 = mInputXs[index1];
+ const int y2 = mInputYs[index1];
+ return getAngle(x1, y1, x2, y2);
+}
+
float ProximityInfoState::getPointAngle(const int index) const {
if (index <= 0 || index >= mInputSize - 1) {
return 0.0f;
}
- const int x = mInputXs[index];
- const int y = mInputYs[index];
- const int nextX = mInputXs[index + 1];
- const int nextY = mInputYs[index + 1];
- const int previousX = mInputXs[index - 1];
- const int previousY = mInputYs[index - 1];
- const float previousDirection = getAngle(previousX, previousY, x, y);
- const float nextDirection = getAngle(x, y, nextX, nextY);
+ const float previousDirection = getDirection(index - 1, index);
+ const float nextDirection = getDirection(index, index + 1);
const float directionDiff = getAngleDiff(previousDirection, nextDirection);
return directionDiff;
}
@@ -641,190 +641,354 @@ float ProximityInfoState::getPointsAngle(
if (index2 < 0 || index2 > mInputSize - 1) {
return 0.0f;
}
- const int x0 = mInputXs[index0];
- const int y0 = mInputYs[index0];
- const int x1 = mInputXs[index1];
- const int y1 = mInputYs[index1];
- const int x2 = mInputXs[index2];
- const int y2 = mInputYs[index2];
- const float previousDirection = getAngle(x0, y0, x1, y1);
- const float nextDirection = getAngle(x1, y1, x2, y2);
- const float directionDiff = getAngleDiff(previousDirection, nextDirection);
- return directionDiff;
+ const float previousDirection = getDirection(index0, index1);
+ const float nextDirection = getDirection(index1, index2);
+ return getAngleDiff(previousDirection, nextDirection);
+}
+
+float ProximityInfoState::getLineToKeyDistance(
+ const int from, const int to, const int keyId, const bool extend) const {
+ if (from < 0 || from > mInputSize - 1) {
+ return 0.0f;
+ }
+ if (to < 0 || to > mInputSize - 1) {
+ return 0.0f;
+ }
+ const int x0 = mInputXs[from];
+ const int y0 = mInputYs[from];
+ const int x1 = mInputXs[to];
+ const int y1 = mInputYs[to];
+
+ const int keyX = mProximityInfo->getKeyCenterXOfKeyIdG(keyId);
+ const int keyY = mProximityInfo->getKeyCenterYOfKeyIdG(keyId);
+
+ return pointToLineSegSquaredDistanceFloat(keyX, keyY, x0, y0, x1, y1, extend);
}
// Updates probabilities of aligning to some keys and skipping.
// Word suggestion should be based on this probabilities.
-void ProximityInfoState::updateAlignPointProbabilities() {
- static const float MIN_PROBABILITY = 0.00001f;
+void ProximityInfoState::updateAlignPointProbabilities(const int start) {
+ static const float MIN_PROBABILITY = 0.000001f;
+ static const float MAX_SKIP_PROBABILITY = 0.95f;
static const float SKIP_FIRST_POINT_PROBABILITY = 0.01f;
static const float SKIP_LAST_POINT_PROBABILITY = 0.1f;
- static const float ANGLE_RATE = 0.8f;
- static const float DEEP_CORNER_ANGLE_THRESHOLD = M_PI_F * 0.5f;
- static const float SKIP_DEEP_CORNER_PROBABILITY = 0.3f;
- static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 35.0f / 180.0f;
+ static const float MIN_SPEED_RATE_FOR_SKIP_PROBABILITY = 0.15f;
+ static const float SPEED_WEIGHT_FOR_SKIP_PROBABILITY = 0.9f;
+ static const float SLOW_STRAIGHT_WEIGHT_FOR_SKIP_PROBABILITY = 0.6f;
+ static const float NEAREST_DISTANCE_WEIGHT = 0.5f;
+ static const float NEAREST_DISTANCE_BIAS = 0.5f;
+ static const float NEAREST_DISTANCE_WEIGHT_FOR_LAST = 0.6f;
+ static const float NEAREST_DISTANCE_BIAS_FOR_LAST = 0.4f;
+
+ static const float ANGLE_WEIGHT = 0.90f;
+ static const float DEEP_CORNER_ANGLE_THRESHOLD = M_PI_F * 60.0f / 180.0f;
+ static const float SKIP_DEEP_CORNER_PROBABILITY = 0.1f;
+ static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 30.0f / 180.0f;
static const float STRAIGHT_ANGLE_THRESHOLD = M_PI_F * 15.0f / 180.0f;
- static const float SKIP_CORNER_PROBABILITY = 0.5f;
- static const float SLOW_STRAIGHT_WEIGHT = 0.8f;
+ static const float SKIP_CORNER_PROBABILITY = 0.4f;
+ static const float SPEED_MARGIN = 0.1f;
static const float CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION = 0.0f;
+ const int keyCount = mProximityInfo->getKeyCount();
mCharProbabilities.resize(mInputSize);
// Calculates probabilities of using a point as a correlated point with the character
// for each point.
- for (int i = 0; i < mInputSize; ++i) {
- // First, calculates skip probability. Starts form 100%.
+ for (int i = start; i < mInputSize; ++i) {
+ mCharProbabilities[i].clear();
+ // First, calculates skip probability. Starts form MIN_SKIP_PROBABILITY.
// Note that all values that are multiplied to this probability should be in [0.0, 1.0];
- float skipProbability = 1.0f;
- const float speed = getRelativeSpeed(i);
+ float skipProbability = MAX_SKIP_PROBABILITY;
+
+ const float currentAngle = getPointAngle(i);
+ const float relativeSpeed = getRelativeSpeed(i);
+
+ float nearestKeyDistance = static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
+ for (int j = 0; j < keyCount; ++j) {
+ if (mNearKeysVector[i].test(j)) {
+ const float distance = getPointToKeyByIdLength(i, j);
+ if (distance < nearestKeyDistance) {
+ nearestKeyDistance = distance;
+ }
+ }
+ }
- // Adjusts skip probability by a rate depending on speed.
- skipProbability *= min(1.0f, speed);
if (i == 0) {
+ skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT
+ + NEAREST_DISTANCE_BIAS);
+ // Promote the first point
skipProbability *= SKIP_FIRST_POINT_PROBABILITY;
} else if (i == mInputSize - 1) {
+ skipProbability *= min(1.0f, nearestKeyDistance * NEAREST_DISTANCE_WEIGHT_FOR_LAST
+ + NEAREST_DISTANCE_BIAS_FOR_LAST);
+ // Promote the last point
skipProbability *= SKIP_LAST_POINT_PROBABILITY;
} else {
- const float currentAngle = getPointAngle(i);
+ // If the current speed is relatively slower than adjacent keys, we promote this point.
+ if (getRelativeSpeed(i - 1) - SPEED_MARGIN > relativeSpeed
+ && relativeSpeed < getRelativeSpeed(i + 1) - SPEED_MARGIN) {
+ if (currentAngle < CORNER_ANGLE_THRESHOLD) {
+ skipProbability *= min(1.0f, relativeSpeed
+ * SLOW_STRAIGHT_WEIGHT_FOR_SKIP_PROBABILITY);
+ } else {
+ // If the angle is small enough, we promote this point more. (e.g. pit vs put)
+ skipProbability *= min(1.0f, relativeSpeed * SPEED_WEIGHT_FOR_SKIP_PROBABILITY
+ + MIN_SPEED_RATE_FOR_SKIP_PROBABILITY);
+ }
+ }
+
+ skipProbability *= min(1.0f, relativeSpeed * nearestKeyDistance *
+ NEAREST_DISTANCE_WEIGHT + NEAREST_DISTANCE_BIAS);
// Adjusts skip probability by a rate depending on angle.
// ANGLE_RATE of skipProbability is adjusted by current angle.
- skipProbability *= max((M_PI_F - currentAngle) / M_PI_F, 0.0f) * ANGLE_RATE +
- (1.0f - ANGLE_RATE);
+ skipProbability *= (M_PI_F - currentAngle) / M_PI_F * ANGLE_WEIGHT
+ + (1.0f - ANGLE_WEIGHT);
if (currentAngle > DEEP_CORNER_ANGLE_THRESHOLD) {
skipProbability *= SKIP_DEEP_CORNER_PROBABILITY;
}
- const float prevAngle = getPointsAngle(i, i - 1, i - 2);
- if (prevAngle < STRAIGHT_ANGLE_THRESHOLD && currentAngle > CORNER_ANGLE_THRESHOLD) {
+ // We assume the angle of this point is the angle for point[i], point[i - 2]
+ // and point[i - 3]. The reason why we don't use the angle for point[i], point[i - 1]
+ // and point[i - 2] is this angle can be more affected by the noise.
+ const float prevAngle = getPointsAngle(i, i - 2, i - 3);
+ if (i >= 3 && prevAngle < STRAIGHT_ANGLE_THRESHOLD
+ && currentAngle > CORNER_ANGLE_THRESHOLD) {
skipProbability *= SKIP_CORNER_PROBABILITY;
}
- if (currentAngle < STRAIGHT_ANGLE_THRESHOLD) {
- // Adjusts skip probability by speed.
- skipProbability *= min(1.0f, speed * SLOW_STRAIGHT_WEIGHT);
- }
}
- // probabilities must be in [0.0, 1.0];
+ // probabilities must be in [0.0, MAX_SKIP_PROBABILITY];
ASSERT(skipProbability >= 0.0f);
- ASSERT(skipProbability <= 1.0f);
-
+ ASSERT(skipProbability <= MAX_SKIP_PROBABILITY);
mCharProbabilities[i][NOT_AN_INDEX] = skipProbability;
+
// Second, calculates key probabilities by dividing the rest probability
// (1.0f - skipProbability).
const float inputCharProbability = 1.0f - skipProbability;
- // Summing up probability densities of all near keys.
- float sumOfProbabilityDensityOfNearKeys = 0.0f;
- const float sigma = speed;
+
+ // TODO: The variance is critical for accuracy; thus, adjusting these parameter by machine
+ // learning or something would be efficient.
+ static const float SPEEDxANGLE_WEIGHT_FOR_STANDARD_DIVIATION = 0.3f;
+ static const float MAX_SPEEDxANGLE_RATE_FOR_STANDERD_DIVIATION = 0.25f;
+ static const float SPEEDxNEAREST_WEIGHT_FOR_STANDARD_DIVIATION = 0.5f;
+ static const float MAX_SPEEDxNEAREST_RATE_FOR_STANDERD_DIVIATION = 0.15f;
+ static const float MIN_STANDERD_DIVIATION = 0.37f;
+
+ const float speedxAngleRate = min(relativeSpeed * currentAngle / M_PI_F
+ * SPEEDxANGLE_WEIGHT_FOR_STANDARD_DIVIATION,
+ MAX_SPEEDxANGLE_RATE_FOR_STANDERD_DIVIATION);
+ const float speedxNearestKeyDistanceRate = min(relativeSpeed * nearestKeyDistance
+ * SPEEDxNEAREST_WEIGHT_FOR_STANDARD_DIVIATION,
+ MAX_SPEEDxNEAREST_RATE_FOR_STANDERD_DIVIATION);
+ const float sigma = speedxAngleRate + speedxNearestKeyDistanceRate + MIN_STANDERD_DIVIATION;
+
NormalDistribution distribution(CENTER_VALUE_OF_NORMALIZED_DISTRIBUTION, sigma);
- for (int j = 0; j < mProximityInfo->getKeyCount(); ++j) {
+ static const float PREV_DISTANCE_WEIGHT = 0.5f;
+ static const float NEXT_DISTANCE_WEIGHT = 0.6f;
+ // Summing up probability densities of all near keys.
+ float sumOfProbabilityDensities = 0.0f;
+ for (int j = 0; j < keyCount; ++j) {
if (mNearKeysVector[i].test(j)) {
- const float distance = sqrtf(getPointToKeyByIdLength(i, j));
- sumOfProbabilityDensityOfNearKeys += distribution.getProbabilityDensity(distance);
+ float distance = sqrtf(getPointToKeyByIdLength(i, j));
+ if (i == 0 && i != mInputSize - 1) {
+ // For the first point, weighted average of distances from first point and the
+ // next point to the key is used as a point to key distance.
+ const float nextDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
+ if (nextDistance < distance) {
+ // The distance of the first point tends to bigger than continuing
+ // points because the first touch by the user can be sloppy.
+ // So we promote the first point if the distance of that point is larger
+ // than the distance of the next point.
+ distance = (distance + nextDistance * NEXT_DISTANCE_WEIGHT)
+ / (1.0f + NEXT_DISTANCE_WEIGHT);
+ }
+ } else if (i != 0 && i == mInputSize - 1) {
+ // For the first point, weighted average of distances from last point and
+ // the previous point to the key is used as a point to key distance.
+ const float previousDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
+ if (previousDistance < distance) {
+ // The distance of the last point tends to bigger than continuing points
+ // because the last touch by the user can be sloppy. So we promote the
+ // last point if the distance of that point is larger than the distance of
+ // the previous point.
+ distance = (distance + previousDistance * PREV_DISTANCE_WEIGHT)
+ / (1.0f + PREV_DISTANCE_WEIGHT);
+ }
+ }
+ // TODO: Promote the first point when the extended line from the next input is near
+ // from a key. Also, promote the last point as well.
+ sumOfProbabilityDensities += distribution.getProbabilityDensity(distance);
}
}
- for (int j = 0; j < mProximityInfo->getKeyCount(); ++j) {
+
+ // Split the probability of an input point to keys that are close to the input point.
+ for (int j = 0; j < keyCount; ++j) {
if (mNearKeysVector[i].test(j)) {
- const float distance = sqrtf(getPointToKeyByIdLength(i, j));
- const float probabilityDessity = distribution.getProbabilityDensity(distance);
- // inputCharProbability divided to the probability for each near key.
- const float probability = inputCharProbability * probabilityDessity
- / sumOfProbabilityDensityOfNearKeys;
- if (probability > MIN_PROBABILITY) {
- mCharProbabilities[i][j] = probability;
+ float distance = sqrtf(getPointToKeyByIdLength(i, j));
+ if (i == 0 && i != mInputSize - 1) {
+ // For the first point, weighted average of distances from the first point and
+ // the next point to the key is used as a point to key distance.
+ const float prevDistance = sqrtf(getPointToKeyByIdLength(i + 1, j));
+ if (prevDistance < distance) {
+ distance = (distance + prevDistance * NEXT_DISTANCE_WEIGHT)
+ / (1.0f + NEXT_DISTANCE_WEIGHT);
+ }
+ } else if (i != 0 && i == mInputSize - 1) {
+ // For the first point, weighted average of distances from last point and
+ // the previous point to the key is used as a point to key distance.
+ const float prevDistance = sqrtf(getPointToKeyByIdLength(i - 1, j));
+ if (prevDistance < distance) {
+ distance = (distance + prevDistance * PREV_DISTANCE_WEIGHT)
+ / (1.0f + PREV_DISTANCE_WEIGHT);
+ }
}
+ const float probabilityDensity = distribution.getProbabilityDensity(distance);
+ const float probability = inputCharProbability * probabilityDensity
+ / sumOfProbabilityDensities;
+ mCharProbabilities[i][j] = probability;
}
}
}
+
+ if (DEBUG_POINTS_PROBABILITY) {
+ for (int i = 0; i < mInputSize; ++i) {
+ std::stringstream sstream;
+ sstream << i << ", ";
+ sstream << "("<< mInputXs[i] << ", ";
+ sstream << ", "<< mInputYs[i] << "), ";
+ sstream << "Speed: "<< getRelativeSpeed(i) << ", ";
+ sstream << "Angle: "<< getPointAngle(i) << ", \n";
+
+ for (hash_map_compat<int, float>::iterator it = mCharProbabilities[i].begin();
+ it != mCharProbabilities[i].end(); ++it) {
+ if (it->first == NOT_AN_INDEX) {
+ sstream << it->first
+ << "(skip):"
+ << it->second
+ << "\n";
+ } else {
+ sstream << it->first
+ << "("
+ << static_cast<char>(mProximityInfo->getCodePointOf(it->first))
+ << "):"
+ << it->second
+ << "\n";
+ }
+ }
+ AKLOGI("%s", sstream.str().c_str());
+ }
+ }
+
// Decrease key probabilities of points which don't have the highest probability of that key
// among nearby points. Probabilities of the first point and the last point are not suppressed.
- for (int i = 1; i < mInputSize - 1; ++i) {
- // forward
+ for (int i = max(start, 1); i < mInputSize; ++i) {
for (int j = i + 1; j < mInputSize; ++j) {
- if (suppressCharProbabilities(i, j)) {
+ if (!suppressCharProbabilities(i, j)) {
break;
}
}
- // backward
- for (int j = i - 1; j >= 0; --j) {
- if (suppressCharProbabilities(i, j)) {
+ for (int j = i - 1; j >= max(start, 0); --j) {
+ if (!suppressCharProbabilities(i, j)) {
break;
}
}
}
- if (DEBUG_POINTS_PROBABILITY) {
- for (int i = 0; i < mInputSize; ++i) {
- std::stringstream sstream;
- sstream << i << ", ";
- for (hash_map_compat<int, float>::iterator it = mCharProbabilities[i].begin();
- it != mCharProbabilities[i].end(); ++it) {
- sstream << it->first
- << "("
- << static_cast<char>(mProximityInfo->getCodePointOf(it->first))
- << "):"
- << it->second
- << ", ";
+ // Converting from raw probabilities to log probabilities to calculate spatial distance.
+ for (int i = start; i < mInputSize; ++i) {
+ for (int j = 0; j < keyCount; ++j) {
+ hash_map_compat<int, float>::iterator it = mCharProbabilities[i].find(j);
+ if (it == mCharProbabilities[i].end()){
+ mNearKeysVector[i].reset(j);
+ } else if(it->second < MIN_PROBABILITY) {
+ // Erases from near keys vector because it has very low probability.
+ mNearKeysVector[i].reset(j);
+ mCharProbabilities[i].erase(j);
+ } else {
+ it->second = -logf(it->second);
}
- AKLOGI("%s", sstream.str().c_str());
}
+ mCharProbabilities[i][NOT_AN_INDEX] = -logf(mCharProbabilities[i][NOT_AN_INDEX]);
}
}
-// Decreases char probabilities of index0 by checking probabilities of a near point (index1).
+// Decreases char probabilities of index0 by checking probabilities of a near point (index1) and
+// increases char probabilities of index1 by checking probabilities of index0.
bool ProximityInfoState::suppressCharProbabilities(const int index0, const int index1) {
ASSERT(0 <= index0 && index0 < mInputSize);
ASSERT(0 <= index1 && index1 < mInputSize);
+
static const float SUPPRESSION_LENGTH_WEIGHT = 1.5f;
+ static const float MIN_SUPPRESSION_RATE = 0.1f;
+ static const float SUPPRESSION_WEIGHT = 0.5f;
+ static const float SUPPRESSION_WEIGHT_FOR_PROBABILITY_GAIN = 0.1f;
+ static const float SKIP_PROBABALITY_WEIGHT_FOR_PROBABILITY_GAIN = 0.3f;
+
const float keyWidthFloat = static_cast<float>(mProximityInfo->getMostCommonKeyWidth());
const float diff = fabsf(static_cast<float>(mLengthCache[index0] - mLengthCache[index1]));
if (diff > keyWidthFloat * SUPPRESSION_LENGTH_WEIGHT) {
return false;
}
- // Summing up decreased amount of probabilities from 0%.
- float sumOfAdjustedProbabilities = 0.0f;
- const float suppressionRate = diff / keyWidthFloat / SUPPRESSION_LENGTH_WEIGHT;
+ const float suppressionRate = MIN_SUPPRESSION_RATE
+ + diff / keyWidthFloat / SUPPRESSION_LENGTH_WEIGHT * SUPPRESSION_WEIGHT;
for (hash_map_compat<int, float>::iterator it = mCharProbabilities[index0].begin();
it != mCharProbabilities[index0].end(); ++it) {
- hash_map_compat<int, float>::const_iterator it2 =
- mCharProbabilities[index1].find(it->first);
+ hash_map_compat<int, float>::iterator it2 = mCharProbabilities[index1].find(it->first);
if (it2 != mCharProbabilities[index1].end() && it->second < it2->second) {
const float newProbability = it->second * suppressionRate;
- sumOfAdjustedProbabilities += it->second - newProbability;
+ const float suppression = it->second - newProbability;
it->second = newProbability;
+ // mCharProbabilities[index0][NOT_AN_INDEX] is the probability of skipping this point.
+ mCharProbabilities[index0][NOT_AN_INDEX] += suppression;
+
+ // Add the probability of the same key nearby index1
+ const float probabilityGain = min(suppression * SUPPRESSION_WEIGHT_FOR_PROBABILITY_GAIN,
+ mCharProbabilities[index1][NOT_AN_INDEX]
+ * SKIP_PROBABALITY_WEIGHT_FOR_PROBABILITY_GAIN);
+ it2->second += probabilityGain;
+ mCharProbabilities[index1][NOT_AN_INDEX] -= probabilityGain;
}
}
- // All decreased amount of probabilities are added to the probability of skipping.
- mCharProbabilities[index0][NOT_AN_INDEX] += sumOfAdjustedProbabilities;
return true;
}
// Get a word that is detected by tracing highest probability sequence into charBuf and returns
// probability of generating the word.
float ProximityInfoState::getHighestProbabilitySequence(uint16_t *const charBuf) const {
- int buf[mInputSize];
- // Maximum probabilities of each point are multiplied to 100%.
- float probability = 1.0f;
+ static const float LOG_PROBABILITY_MARGIN = 0.2f;
+ int index = 0;
+ float sumLogProbability = 0.0f;
// TODO: Current implementation is greedy algorithm. DP would be efficient for many cases.
- for (int i = 0; i < mInputSize; ++i) {
- float maxProbability = 0.0f;
+ for (int i = 0; i < mInputSize && index < MAX_WORD_LENGTH_INTERNAL - 1; ++i) {
+ float minLogProbability = static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
+ int character = NOT_AN_INDEX;
for (hash_map_compat<int, float>::const_iterator it = mCharProbabilities[i].begin();
it != mCharProbabilities[i].end(); ++it) {
- if (it->second > maxProbability) {
- maxProbability = it->second;
- buf[i] = it->first;
+ const float logProbability = (it->first != NOT_AN_INDEX)
+ ? it->second + LOG_PROBABILITY_MARGIN : it->second;
+ if (logProbability < minLogProbability) {
+ minLogProbability = logProbability;
+ character = it->first;
}
}
- probability *= maxProbability;
- }
- int index = 0;
- for (int i = 0; i < mInputSize && index < MAX_WORD_LENGTH_INTERNAL - 1; ++i) {
- if (buf[i] != NOT_AN_INDEX) {
- charBuf[index] = mProximityInfo->getCodePointOf(buf[i]);
+ if (character != NOT_AN_INDEX) {
+ charBuf[index] = mProximityInfo->getCodePointOf(character);
index++;
}
+ sumLogProbability += minLogProbability;
}
charBuf[index] = '\0';
- return probability;
+ return sumLogProbability;
+}
+
+// Returns a probability of mapping index to keyIndex.
+float ProximityInfoState::getProbability(const int index, const int keyIndex) const {
+ ASSERT(0 <= index && index < mInputSize);
+ hash_map_compat<int, float>::const_iterator it = mCharProbabilities[index].find(keyIndex);
+ if (it != mCharProbabilities[index].end()) {
+ return it->second;
+ }
+ return static_cast<float>(MAX_POINT_TO_KEY_LENGTH);
}
} // namespace latinime