aboutsummaryrefslogtreecommitdiffstats
path: root/native/jni/src/unigram_dictionary.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'native/jni/src/unigram_dictionary.cpp')
-rw-r--r--native/jni/src/unigram_dictionary.cpp993
1 files changed, 993 insertions, 0 deletions
diff --git a/native/jni/src/unigram_dictionary.cpp b/native/jni/src/unigram_dictionary.cpp
new file mode 100644
index 000000000..3417d2ba7
--- /dev/null
+++ b/native/jni/src/unigram_dictionary.cpp
@@ -0,0 +1,993 @@
+/*
+**
+** Copyright 2010, The Android Open Source Project
+**
+** Licensed under the Apache License, Version 2.0 (the "License");
+** you may not use this file except in compliance with the License.
+** You may obtain a copy of the License at
+**
+** http://www.apache.org/licenses/LICENSE-2.0
+**
+** Unless required by applicable law or agreed to in writing, software
+** distributed under the License is distributed on an "AS IS" BASIS,
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+** See the License for the specific language governing permissions and
+** limitations under the License.
+*/
+
+#include <assert.h>
+#include <string.h>
+
+#define LOG_TAG "LatinIME: unigram_dictionary.cpp"
+
+#include "char_utils.h"
+#include "defines.h"
+#include "dictionary.h"
+#include "unigram_dictionary.h"
+
+#include "binary_format.h"
+#include "terminal_attributes.h"
+
+namespace latinime {
+
+const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
+ { { 'a', 'e', 0x00E4 }, // U+00E4 : LATIN SMALL LETTER A WITH DIAERESIS
+ { 'o', 'e', 0x00F6 }, // U+00F6 : LATIN SMALL LETTER O WITH DIAERESIS
+ { 'u', 'e', 0x00FC } }; // U+00FC : LATIN SMALL LETTER U WITH DIAERESIS
+
+const UnigramDictionary::digraph_t UnigramDictionary::FRENCH_LIGATURES_DIGRAPHS[] =
+ { { 'a', 'e', 0x00E6 }, // U+00E6 : LATIN SMALL LETTER AE
+ { 'o', 'e', 0x0153 } }; // U+0153 : LATIN SMALL LIGATURE OE
+
+// TODO: check the header
+UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier,
+ int fullWordMultiplier, int maxWordLength, int maxWords, const unsigned int flags)
+ : DICT_ROOT(streamStart), MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
+ TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
+ // TODO : remove this variable.
+ ROOT_POS(0),
+ BYTES_IN_ONE_CHAR(sizeof(int)),
+ MAX_DIGRAPH_SEARCH_DEPTH(DEFAULT_MAX_DIGRAPH_SEARCH_DEPTH), FLAGS(flags) {
+ if (DEBUG_DICT) {
+ AKLOGI("UnigramDictionary - constructor");
+ }
+}
+
+UnigramDictionary::~UnigramDictionary() {
+}
+
+static inline unsigned int getCodesBufferSize(const int *codes, const int codesSize) {
+ return sizeof(*codes) * codesSize;
+}
+
+// TODO: This needs to take a const unsigned short* and not tinker with its contents
+static inline void addWord(
+ unsigned short *word, int length, int frequency, WordsPriorityQueue *queue) {
+ queue->push(frequency, word, length);
+}
+
+// Return the replacement code point for a digraph, or 0 if none.
+int UnigramDictionary::getDigraphReplacement(const int *codes, const int i, const int codesSize,
+ const digraph_t* const digraphs, const unsigned int digraphsSize) const {
+
+ // There can't be a digraph if we don't have at least 2 characters to examine
+ if (i + 2 > codesSize) return false;
+
+ // Search for the first char of some digraph
+ int lastDigraphIndex = -1;
+ const int thisChar = codes[i];
+ for (lastDigraphIndex = digraphsSize - 1; lastDigraphIndex >= 0; --lastDigraphIndex) {
+ if (thisChar == digraphs[lastDigraphIndex].first) break;
+ }
+ // No match: return early
+ if (lastDigraphIndex < 0) return 0;
+
+ // It's an interesting digraph if the second char matches too.
+ if (digraphs[lastDigraphIndex].second == codes[i + 1]) {
+ return digraphs[lastDigraphIndex].replacement;
+ } else {
+ return 0;
+ }
+}
+
+// Mostly the same arguments as the non-recursive version, except:
+// codes is the original value. It points to the start of the work buffer, and gets passed as is.
+// codesSize is the size of the user input (thus, it is the size of codesSrc).
+// codesDest is the current point in the work buffer.
+// codesSrc is the current point in the user-input, original, content-unmodified buffer.
+// codesRemain is the remaining size in codesSrc.
+void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo,
+ const int *xcoordinates, const int *ycoordinates, const int *codesBuffer,
+ int *xCoordinatesBuffer, int *yCoordinatesBuffer,
+ const int codesBufferSize, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
+ const bool useFullEditDistance, const int *codesSrc,
+ const int codesRemain, const int currentDepth, int *codesDest, Correction *correction,
+ WordsPriorityQueuePool *queuePool,
+ const digraph_t* const digraphs, const unsigned int digraphsSize) const {
+
+ const int startIndex = codesDest - codesBuffer;
+ if (currentDepth < MAX_DIGRAPH_SEARCH_DEPTH) {
+ for (int i = 0; i < codesRemain; ++i) {
+ xCoordinatesBuffer[startIndex + i] = xcoordinates[codesBufferSize - codesRemain + i];
+ yCoordinatesBuffer[startIndex + i] = ycoordinates[codesBufferSize - codesRemain + i];
+ const int replacementCodePoint =
+ getDigraphReplacement(codesSrc, i, codesRemain, digraphs, digraphsSize);
+ if (0 != replacementCodePoint) {
+ // Found a digraph. We will try both spellings. eg. the word is "pruefen"
+
+ // Copy the word up to the first char of the digraph, including proximity chars,
+ // and overwrite the primary code with the replacement code point. Then, continue
+ // processing on the remaining part of the word, skipping the second char of the
+ // digraph.
+ // In our example, copy "pru", replace "u" with the version with the diaeresis and
+ // continue running on "fen".
+ // Make i the index of the second char of the digraph for simplicity. Forgetting
+ // to do that results in an infinite recursion so take care!
+ ++i;
+ memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR);
+ codesDest[(i - 1) * (BYTES_IN_ONE_CHAR / sizeof(codesDest[0]))] =
+ replacementCodePoint;
+ getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
+ codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize,
+ bigramMap, bigramFilter, useFullEditDistance, codesSrc + i + 1,
+ codesRemain - i - 1, currentDepth + 1, codesDest + i, correction,
+ queuePool, digraphs, digraphsSize);
+
+ // Copy the second char of the digraph in place, then continue processing on
+ // the remaining part of the word.
+ // In our example, after "pru" in the buffer copy the "e", and continue on "fen"
+ memcpy(codesDest + i, codesSrc + i, BYTES_IN_ONE_CHAR);
+ getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
+ codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize,
+ bigramMap, bigramFilter, useFullEditDistance, codesSrc + i, codesRemain - i,
+ currentDepth + 1, codesDest + i, correction, queuePool, digraphs,
+ digraphsSize);
+ return;
+ }
+ }
+ }
+
+ // If we come here, we hit the end of the word: let's check it against the dictionary.
+ // In our example, we'll come here once for "prufen" and then once for "pruefen".
+ // If the word contains several digraphs, we'll come it for the product of them.
+ // eg. if the word is "ueberpruefen" we'll test, in order, against
+ // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen".
+ const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain;
+ if (0 != remainingBytes) {
+ memcpy(codesDest, codesSrc, remainingBytes);
+ memcpy(&xCoordinatesBuffer[startIndex], &xcoordinates[codesBufferSize - codesRemain],
+ sizeof(int) * codesRemain);
+ memcpy(&yCoordinatesBuffer[startIndex], &ycoordinates[codesBufferSize - codesRemain],
+ sizeof(int) * codesRemain);
+ }
+
+ getWordSuggestions(proximityInfo, xCoordinatesBuffer, yCoordinatesBuffer, codesBuffer,
+ startIndex + codesRemain, bigramMap, bigramFilter, useFullEditDistance, correction,
+ queuePool);
+}
+
+// bigramMap contains the association <bigram address> -> <bigram frequency>
+// bigramFilter is a bloom filter for fast rejection: see functions setInFilter and isInFilter
+// in bigram_dictionary.cpp
+int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo,
+ const int *xcoordinates,
+ const int *ycoordinates, const int *codes, const int codesSize,
+ const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
+ const bool useFullEditDistance, unsigned short *outWords, int *frequencies) const {
+
+ WordsPriorityQueuePool queuePool(MAX_WORDS, SUB_QUEUE_MAX_WORDS, MAX_WORD_LENGTH);
+ queuePool.clearAll();
+ Correction masterCorrection;
+ masterCorrection.resetCorrection();
+ if (BinaryFormat::REQUIRES_GERMAN_UMLAUT_PROCESSING & FLAGS)
+ { // Incrementally tune the word and try all possibilities
+ int codesBuffer[getCodesBufferSize(codes, codesSize)];
+ int xCoordinatesBuffer[codesSize];
+ int yCoordinatesBuffer[codesSize];
+ getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
+ xCoordinatesBuffer, yCoordinatesBuffer, codesSize, bigramMap, bigramFilter,
+ useFullEditDistance, codes, codesSize, 0, codesBuffer, &masterCorrection,
+ &queuePool, GERMAN_UMLAUT_DIGRAPHS,
+ sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]));
+ } else if (BinaryFormat::REQUIRES_FRENCH_LIGATURES_PROCESSING & FLAGS) {
+ int codesBuffer[getCodesBufferSize(codes, codesSize)];
+ int xCoordinatesBuffer[codesSize];
+ int yCoordinatesBuffer[codesSize];
+ getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
+ xCoordinatesBuffer, yCoordinatesBuffer, codesSize, bigramMap, bigramFilter,
+ useFullEditDistance, codes, codesSize, 0, codesBuffer, &masterCorrection,
+ &queuePool, FRENCH_LIGATURES_DIGRAPHS,
+ sizeof(FRENCH_LIGATURES_DIGRAPHS) / sizeof(FRENCH_LIGATURES_DIGRAPHS[0]));
+ } else { // Normal processing
+ getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize,
+ bigramMap, bigramFilter, useFullEditDistance, &masterCorrection, &queuePool);
+ }
+
+ PROF_START(20);
+ if (DEBUG_DICT) {
+ float ns = queuePool.getMasterQueue()->getHighestNormalizedScore(
+ masterCorrection.getPrimaryInputWord(), codesSize, 0, 0, 0);
+ ns += 0;
+ AKLOGI("Max normalized score = %f", ns);
+ }
+ const int suggestedWordsCount =
+ queuePool.getMasterQueue()->outputSuggestions(
+ masterCorrection.getPrimaryInputWord(), codesSize, frequencies, outWords);
+
+ if (DEBUG_DICT) {
+ float ns = queuePool.getMasterQueue()->getHighestNormalizedScore(
+ masterCorrection.getPrimaryInputWord(), codesSize, 0, 0, 0);
+ ns += 0;
+ AKLOGI("Returning %d words", suggestedWordsCount);
+ /// Print the returned words
+ for (int j = 0; j < suggestedWordsCount; ++j) {
+ short unsigned int* w = outWords + j * MAX_WORD_LENGTH;
+ char s[MAX_WORD_LENGTH];
+ for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i];
+ (void)s;
+ AKLOGI("%s %i", s, frequencies[j]);
+ }
+ }
+ PROF_END(20);
+ PROF_CLOSE;
+ return suggestedWordsCount;
+}
+
+void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
+ const int *xcoordinates, const int *ycoordinates, const int *codes,
+ const int inputLength, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
+ const bool useFullEditDistance, Correction *correction,
+ WordsPriorityQueuePool *queuePool) const {
+
+ PROF_OPEN;
+ PROF_START(0);
+ PROF_END(0);
+
+ PROF_START(1);
+ getOneWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, bigramMap, bigramFilter,
+ useFullEditDistance, inputLength, correction, queuePool);
+ PROF_END(1);
+
+ PROF_START(2);
+ // Note: This line is intentionally left blank
+ PROF_END(2);
+
+ PROF_START(3);
+ // Note: This line is intentionally left blank
+ PROF_END(3);
+
+ PROF_START(4);
+ bool hasAutoCorrectionCandidate = false;
+ WordsPriorityQueue* masterQueue = queuePool->getMasterQueue();
+ if (masterQueue->size() > 0) {
+ float nsForMaster = masterQueue->getHighestNormalizedScore(
+ correction->getPrimaryInputWord(), inputLength, 0, 0, 0);
+ hasAutoCorrectionCandidate = (nsForMaster > START_TWO_WORDS_CORRECTION_THRESHOLD);
+ }
+ PROF_END(4);
+
+ PROF_START(5);
+ // Multiple word suggestions
+ if (SUGGEST_MULTIPLE_WORDS
+ && inputLength >= MIN_USER_TYPED_LENGTH_FOR_MULTIPLE_WORD_SUGGESTION) {
+ getSplitMultipleWordsSuggestions(proximityInfo, xcoordinates, ycoordinates, codes,
+ useFullEditDistance, inputLength, correction, queuePool,
+ hasAutoCorrectionCandidate);
+ }
+ PROF_END(5);
+
+ PROF_START(6);
+ // Note: This line is intentionally left blank
+ PROF_END(6);
+
+ if (DEBUG_DICT) {
+ queuePool->dumpSubQueue1TopSuggestions();
+ for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) {
+ WordsPriorityQueue* queue = queuePool->getSubQueue(FIRST_WORD_INDEX, i);
+ if (queue->size() > 0) {
+ WordsPriorityQueue::SuggestedWord* sw = queue->top();
+ const int score = sw->mScore;
+ const unsigned short* word = sw->mWord;
+ const int wordLength = sw->mWordLength;
+ float ns = Correction::RankingAlgorithm::calcNormalizedScore(
+ correction->getPrimaryInputWord(), i, word, wordLength, score);
+ ns += 0;
+ AKLOGI("--- TOP SUB WORDS for %d --- %d %f [%d]", i, score, ns,
+ (ns > TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD));
+ DUMP_WORD(correction->getPrimaryInputWord(), i);
+ DUMP_WORD(word, wordLength);
+ }
+ }
+ }
+}
+
+void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xCoordinates,
+ const int *yCoordinates, const int *codes, const int inputLength,
+ Correction *correction) const {
+ if (DEBUG_DICT) {
+ AKLOGI("initSuggest");
+ DUMP_WORD_INT(codes, inputLength);
+ }
+ correction->initInputParams(proximityInfo, codes, inputLength, xCoordinates, yCoordinates);
+ const int maxDepth = min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
+ correction->initCorrection(proximityInfo, inputLength, maxDepth);
+}
+
+static const char QUOTE = '\'';
+static const char SPACE = ' ';
+
+void UnigramDictionary::getOneWordSuggestions(ProximityInfo *proximityInfo,
+ const int *xcoordinates, const int *ycoordinates, const int *codes,
+ const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
+ const bool useFullEditDistance, const int inputLength,
+ Correction *correction, WordsPriorityQueuePool *queuePool) const {
+ initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, inputLength, correction);
+ getSuggestionCandidates(useFullEditDistance, inputLength, bigramMap, bigramFilter, correction,
+ queuePool, true /* doAutoCompletion */, DEFAULT_MAX_ERRORS, FIRST_WORD_INDEX);
+}
+
+void UnigramDictionary::getSuggestionCandidates(const bool useFullEditDistance,
+ const int inputLength, const std::map<int, int> *bigramMap, const uint8_t *bigramFilter,
+ Correction *correction, WordsPriorityQueuePool *queuePool,
+ const bool doAutoCompletion, const int maxErrors, const int currentWordIndex) const {
+ uint8_t totalTraverseCount = correction->pushAndGetTotalTraverseCount();
+ if (DEBUG_DICT) {
+ AKLOGI("Traverse count %d", totalTraverseCount);
+ }
+ if (totalTraverseCount > MULTIPLE_WORDS_SUGGESTION_MAX_TOTAL_TRAVERSE_COUNT) {
+ if (DEBUG_DICT) {
+ AKLOGI("Abort traversing %d", totalTraverseCount);
+ }
+ return;
+ }
+ // TODO: Remove setCorrectionParams
+ correction->setCorrectionParams(0, 0, 0,
+ -1 /* spaceProximityPos */, -1 /* missingSpacePos */, useFullEditDistance,
+ doAutoCompletion, maxErrors);
+ int rootPosition = ROOT_POS;
+ // Get the number of children of root, then increment the position
+ int childCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &rootPosition);
+ int outputIndex = 0;
+
+ correction->initCorrectionState(rootPosition, childCount, (inputLength <= 0));
+
+ // Depth first search
+ while (outputIndex >= 0) {
+ if (correction->initProcessState(outputIndex)) {
+ int siblingPos = correction->getTreeSiblingPos(outputIndex);
+ int firstChildPos;
+
+ const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos,
+ bigramMap, bigramFilter, correction, &childCount, &firstChildPos, &siblingPos,
+ queuePool, currentWordIndex);
+ // Update next sibling pos
+ correction->setTreeSiblingPos(outputIndex, siblingPos);
+
+ if (needsToTraverseChildrenNodes) {
+ // Goes to child node
+ outputIndex = correction->goDownTree(outputIndex, childCount, firstChildPos);
+ }
+ } else {
+ // Goes to parent sibling node
+ outputIndex = correction->getTreeParentIndex(outputIndex);
+ }
+ }
+}
+
+inline void UnigramDictionary::onTerminal(const int probability,
+ const TerminalAttributes& terminalAttributes, Correction *correction,
+ WordsPriorityQueuePool *queuePool, const bool addToMasterQueue,
+ const int currentWordIndex) const {
+ const int inputIndex = correction->getInputIndex();
+ const bool addToSubQueue = inputIndex < SUB_QUEUE_MAX_COUNT;
+
+ int wordLength;
+ unsigned short* wordPointer;
+
+ if ((currentWordIndex == FIRST_WORD_INDEX) && addToMasterQueue) {
+ WordsPriorityQueue *masterQueue = queuePool->getMasterQueue();
+ const int finalProbability =
+ correction->getFinalProbability(probability, &wordPointer, &wordLength);
+ if (finalProbability != NOT_A_PROBABILITY) {
+ addWord(wordPointer, wordLength, finalProbability, masterQueue);
+
+ const int shortcutProbability = finalProbability > 0 ? finalProbability - 1 : 0;
+ // Please note that the shortcut candidates will be added to the master queue only.
+ TerminalAttributes::ShortcutIterator iterator =
+ terminalAttributes.getShortcutIterator();
+ while (iterator.hasNextShortcutTarget()) {
+ // TODO: addWord only supports weak ordering, meaning we have no means
+ // to control the order of the shortcuts relative to one another or to the word.
+ // We need to either modulate the probability of each shortcut according
+ // to its own shortcut probability or to make the queue
+ // so that the insert order is protected inside the queue for words
+ // with the same score. For the moment we use -1 to make sure the shortcut will
+ // never be in front of the word.
+ uint16_t shortcutTarget[MAX_WORD_LENGTH_INTERNAL];
+ const int shortcutTargetStringLength = iterator.getNextShortcutTarget(
+ MAX_WORD_LENGTH_INTERNAL, shortcutTarget);
+ addWord(shortcutTarget, shortcutTargetStringLength, shortcutProbability,
+ masterQueue);
+ }
+ }
+ }
+
+ // We only allow two words + other error correction for words with SUB_QUEUE_MIN_WORD_LENGTH
+ // or more length.
+ if (inputIndex >= SUB_QUEUE_MIN_WORD_LENGTH && addToSubQueue) {
+ WordsPriorityQueue *subQueue;
+ subQueue = queuePool->getSubQueue(currentWordIndex, inputIndex);
+ if (!subQueue) {
+ return;
+ }
+ const int finalProbability = correction->getFinalProbabilityForSubQueue(
+ probability, &wordPointer, &wordLength, inputIndex);
+ addWord(wordPointer, wordLength, finalProbability, subQueue);
+ }
+}
+
+int UnigramDictionary::getSubStringSuggestion(
+ ProximityInfo *proximityInfo, const int *xcoordinates, const int *ycoordinates,
+ const int *codes, const bool useFullEditDistance, Correction *correction,
+ WordsPriorityQueuePool* queuePool, const int inputLength,
+ const bool hasAutoCorrectionCandidate, const int currentWordIndex,
+ const int inputWordStartPos, const int inputWordLength,
+ const int outputWordStartPos, const bool isSpaceProximity, int *freqArray,
+ int*wordLengthArray, unsigned short* outputWord, int *outputWordLength) const {
+ if (inputWordLength > MULTIPLE_WORDS_SUGGESTION_MAX_WORD_LENGTH) {
+ return FLAG_MULTIPLE_SUGGEST_ABORT;
+ }
+
+ /////////////////////////////////////////////
+ // safety net for multiple word suggestion //
+ // TODO: Remove this safety net //
+ /////////////////////////////////////////////
+ int smallWordCount = 0;
+ int singleLetterWordCount = 0;
+ if (inputWordLength == 1) {
+ ++singleLetterWordCount;
+ }
+ if (inputWordLength <= 2) {
+ // small word == single letter or 2-letter word
+ ++smallWordCount;
+ }
+ for (int i = 0; i < currentWordIndex; ++i) {
+ const int length = wordLengthArray[i];
+ if (length == 1) {
+ ++singleLetterWordCount;
+ // Safety net to avoid suggesting sequential single letter words
+ if (i < (currentWordIndex - 1)) {
+ if (wordLengthArray[i + 1] == 1) {
+ return FLAG_MULTIPLE_SUGGEST_ABORT;
+ }
+ } else if (inputWordLength == 1) {
+ return FLAG_MULTIPLE_SUGGEST_ABORT;
+ }
+ }
+ if (length <= 2) {
+ ++smallWordCount;
+ }
+ // Safety net to avoid suggesting multiple words with many (4 or more, for now) small words
+ if (singleLetterWordCount >= 3 || smallWordCount >= 4) {
+ return FLAG_MULTIPLE_SUGGEST_ABORT;
+ }
+ }
+ //////////////////////////////////////////////
+ // TODO: Remove the safety net above //
+ //////////////////////////////////////////////
+
+ unsigned short* tempOutputWord = 0;
+ int nextWordLength = 0;
+ // TODO: Optimize init suggestion
+ initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes,
+ inputLength, correction);
+
+ unsigned short word[MAX_WORD_LENGTH_INTERNAL];
+ int freq = getMostFrequentWordLike(
+ inputWordStartPos, inputWordLength, correction, word);
+ if (freq > 0) {
+ nextWordLength = inputWordLength;
+ tempOutputWord = word;
+ } else if (!hasAutoCorrectionCandidate) {
+ if (inputWordStartPos > 0) {
+ const int offset = inputWordStartPos;
+ initSuggestions(proximityInfo, &xcoordinates[offset], &ycoordinates[offset],
+ codes + offset, inputWordLength, correction);
+ queuePool->clearSubQueue(currentWordIndex);
+ // TODO: pass the bigram list for substring suggestion
+ getSuggestionCandidates(useFullEditDistance, inputWordLength,
+ 0 /* bigramMap */, 0 /* bigramFilter */, correction, queuePool,
+ false /* doAutoCompletion */, MAX_ERRORS_FOR_TWO_WORDS, currentWordIndex);
+ if (DEBUG_DICT) {
+ if (currentWordIndex < MULTIPLE_WORDS_SUGGESTION_MAX_WORDS) {
+ AKLOGI("Dump word candidates(%d) %d", currentWordIndex, inputWordLength);
+ for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) {
+ queuePool->getSubQueue(currentWordIndex, i)->dumpTopWord();
+ }
+ }
+ }
+ }
+ WordsPriorityQueue* queue = queuePool->getSubQueue(currentWordIndex, inputWordLength);
+ // TODO: Return the correct value depending on doAutoCompletion
+ if (!queue || queue->size() <= 0) {
+ return FLAG_MULTIPLE_SUGGEST_ABORT;
+ }
+ int score = 0;
+ const float ns = queue->getHighestNormalizedScore(
+ correction->getPrimaryInputWord(), inputWordLength,
+ &tempOutputWord, &score, &nextWordLength);
+ if (DEBUG_DICT) {
+ AKLOGI("NS(%d) = %f, Score = %d", currentWordIndex, ns, score);
+ }
+ // Two words correction won't be done if the score of the first word doesn't exceed the
+ // threshold.
+ if (ns < TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD
+ || nextWordLength < SUB_QUEUE_MIN_WORD_LENGTH) {
+ return FLAG_MULTIPLE_SUGGEST_SKIP;
+ }
+ freq = score >> (nextWordLength + TWO_WORDS_PLUS_OTHER_ERROR_CORRECTION_DEMOTION_DIVIDER);
+ }
+ if (DEBUG_DICT) {
+ AKLOGI("Freq(%d): %d, length: %d, input length: %d, input start: %d (%d)"
+ , currentWordIndex, freq, nextWordLength, inputWordLength, inputWordStartPos,
+ wordLengthArray[0]);
+ }
+ if (freq <= 0 || nextWordLength <= 0
+ || MAX_WORD_LENGTH <= (outputWordStartPos + nextWordLength)) {
+ return FLAG_MULTIPLE_SUGGEST_SKIP;
+ }
+ for (int i = 0; i < nextWordLength; ++i) {
+ outputWord[outputWordStartPos + i] = tempOutputWord[i];
+ }
+
+ // Put output values
+ freqArray[currentWordIndex] = freq;
+ // TODO: put output length instead of input length
+ wordLengthArray[currentWordIndex] = inputWordLength;
+ const int tempOutputWordLength = outputWordStartPos + nextWordLength;
+ if (outputWordLength) {
+ *outputWordLength = tempOutputWordLength;
+ }
+
+ if ((inputWordStartPos + inputWordLength) < inputLength) {
+ if (outputWordStartPos + nextWordLength >= MAX_WORD_LENGTH) {
+ return FLAG_MULTIPLE_SUGGEST_SKIP;
+ }
+ outputWord[tempOutputWordLength] = SPACE;
+ if (outputWordLength) {
+ ++*outputWordLength;
+ }
+ } else if (currentWordIndex >= 1) {
+ // TODO: Handle 3 or more words
+ const int pairFreq = correction->getFreqForSplitMultipleWords(
+ freqArray, wordLengthArray, currentWordIndex + 1, isSpaceProximity, outputWord);
+ if (DEBUG_DICT) {
+ DUMP_WORD(outputWord, tempOutputWordLength);
+ for (int i = 0; i < currentWordIndex + 1; ++i) {
+ AKLOGI("Split %d,%d words: freq = %d, length = %d", i, currentWordIndex + 1,
+ freqArray[i], wordLengthArray[i]);
+ }
+ AKLOGI("Split two words: freq = %d, length = %d, %d, isSpace ? %d", pairFreq,
+ inputLength, tempOutputWordLength, isSpaceProximity);
+ }
+ addWord(outputWord, tempOutputWordLength, pairFreq, queuePool->getMasterQueue());
+ }
+ return FLAG_MULTIPLE_SUGGEST_CONTINUE;
+}
+
+void UnigramDictionary::getMultiWordsSuggestionRec(ProximityInfo *proximityInfo,
+ const int *xcoordinates, const int *ycoordinates, const int *codes,
+ const bool useFullEditDistance, const int inputLength,
+ Correction *correction, WordsPriorityQueuePool* queuePool,
+ const bool hasAutoCorrectionCandidate, const int startInputPos, const int startWordIndex,
+ const int outputWordLength, int *freqArray, int* wordLengthArray,
+ unsigned short* outputWord) const {
+ if (startWordIndex >= (MULTIPLE_WORDS_SUGGESTION_MAX_WORDS - 1)) {
+ // Return if the last word index
+ return;
+ }
+ if (startWordIndex >= 1
+ && (hasAutoCorrectionCandidate
+ || inputLength < MIN_INPUT_LENGTH_FOR_THREE_OR_MORE_WORDS_CORRECTION)) {
+ // Do not suggest 3+ words if already has auto correction candidate
+ return;
+ }
+ for (int i = startInputPos + 1; i < inputLength; ++i) {
+ if (DEBUG_CORRECTION_FREQ) {
+ AKLOGI("Multi words(%d), start in %d sep %d start out %d",
+ startWordIndex, startInputPos, i, outputWordLength);
+ DUMP_WORD(outputWord, outputWordLength);
+ }
+ int tempOutputWordLength = 0;
+ // Current word
+ int inputWordStartPos = startInputPos;
+ int inputWordLength = i - startInputPos;
+ const int suggestionFlag = getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates,
+ codes, useFullEditDistance, correction, queuePool, inputLength,
+ hasAutoCorrectionCandidate, startWordIndex, inputWordStartPos, inputWordLength,
+ outputWordLength, true /* not used */, freqArray, wordLengthArray, outputWord,
+ &tempOutputWordLength);
+ if (suggestionFlag == FLAG_MULTIPLE_SUGGEST_ABORT) {
+ // TODO: break here
+ continue;
+ } else if (suggestionFlag == FLAG_MULTIPLE_SUGGEST_SKIP) {
+ continue;
+ }
+
+ if (DEBUG_CORRECTION_FREQ) {
+ AKLOGI("Do missing space correction");
+ }
+ // Next word
+ // Missing space
+ inputWordStartPos = i;
+ inputWordLength = inputLength - i;
+ if(getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes,
+ useFullEditDistance, correction, queuePool, inputLength, hasAutoCorrectionCandidate,
+ startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength,
+ false /* missing space */, freqArray, wordLengthArray, outputWord, 0)
+ != FLAG_MULTIPLE_SUGGEST_CONTINUE) {
+ getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes,
+ useFullEditDistance, inputLength, correction, queuePool,
+ hasAutoCorrectionCandidate, inputWordStartPos, startWordIndex + 1,
+ tempOutputWordLength, freqArray, wordLengthArray, outputWord);
+ }
+
+ // Mistyped space
+ ++inputWordStartPos;
+ --inputWordLength;
+
+ if (inputWordLength <= 0) {
+ continue;
+ }
+
+ const int x = xcoordinates[inputWordStartPos - 1];
+ const int y = ycoordinates[inputWordStartPos - 1];
+ if (!proximityInfo->hasSpaceProximity(x, y)) {
+ continue;
+ }
+
+ if (DEBUG_CORRECTION_FREQ) {
+ AKLOGI("Do mistyped space correction");
+ }
+ getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes,
+ useFullEditDistance, correction, queuePool, inputLength, hasAutoCorrectionCandidate,
+ startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength,
+ true /* mistyped space */, freqArray, wordLengthArray, outputWord, 0);
+ }
+}
+
+void UnigramDictionary::getSplitMultipleWordsSuggestions(ProximityInfo *proximityInfo,
+ const int *xcoordinates, const int *ycoordinates, const int *codes,
+ const bool useFullEditDistance, const int inputLength,
+ Correction *correction, WordsPriorityQueuePool* queuePool,
+ const bool hasAutoCorrectionCandidate) const {
+ if (inputLength >= MAX_WORD_LENGTH) return;
+ if (DEBUG_DICT) {
+ AKLOGI("--- Suggest multiple words");
+ }
+
+ // Allocating fixed length array on stack
+ unsigned short outputWord[MAX_WORD_LENGTH];
+ int freqArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS];
+ int wordLengthArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS];
+ const int outputWordLength = 0;
+ const int startInputPos = 0;
+ const int startWordIndex = 0;
+ getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes,
+ useFullEditDistance, inputLength, correction, queuePool, hasAutoCorrectionCandidate,
+ startInputPos, startWordIndex, outputWordLength, freqArray, wordLengthArray,
+ outputWord);
+}
+
+// Wrapper for getMostFrequentWordLikeInner, which matches it to the previous
+// interface.
+inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex,
+ const int inputLength, Correction *correction, unsigned short *word) const {
+ uint16_t inWord[inputLength];
+
+ for (int i = 0; i < inputLength; ++i) {
+ inWord[i] = (uint16_t)correction->getPrimaryCharAt(startInputIndex + i);
+ }
+ return getMostFrequentWordLikeInner(inWord, inputLength, word);
+}
+
+// This function will take the position of a character array within a CharGroup,
+// and check it actually like-matches the word in inWord starting at startInputIndex,
+// that is, it matches it with case and accents squashed.
+// The function returns true if there was a full match, false otherwise.
+// The function will copy on-the-fly the characters in the CharGroup to outNewWord.
+// It will also place the end position of the array in outPos; in outInputIndex,
+// it will place the index of the first char AFTER the match if there was a match,
+// and the initial position if there was not. It makes sense because if there was
+// a match we want to continue searching, but if there was not, we want to go to
+// the next CharGroup.
+// In and out parameters may point to the same location. This function takes care
+// not to use any input parameters after it wrote into its outputs.
+static inline bool testCharGroupForContinuedLikeness(const uint8_t flags,
+ const uint8_t* const root, const int startPos,
+ const uint16_t* const inWord, const int startInputIndex,
+ int32_t* outNewWord, int* outInputIndex, int* outPos) {
+ const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags));
+ int pos = startPos;
+ int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ int32_t baseChar = toBaseLowerCase(character);
+ const uint16_t wChar = toBaseLowerCase(inWord[startInputIndex]);
+
+ if (baseChar != wChar) {
+ *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos;
+ *outInputIndex = startInputIndex;
+ return false;
+ }
+ int inputIndex = startInputIndex;
+ outNewWord[inputIndex] = character;
+ if (hasMultipleChars) {
+ character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ while (NOT_A_CHARACTER != character) {
+ baseChar = toBaseLowerCase(character);
+ if (toBaseLowerCase(inWord[++inputIndex]) != baseChar) {
+ *outPos = BinaryFormat::skipOtherCharacters(root, pos);
+ *outInputIndex = startInputIndex;
+ return false;
+ }
+ outNewWord[inputIndex] = character;
+ character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ }
+ }
+ *outInputIndex = inputIndex + 1;
+ *outPos = pos;
+ return true;
+}
+
+// This function is invoked when a word like the word searched for is found.
+// It will compare the frequency to the max frequency, and if greater, will
+// copy the word into the output buffer. In output value maxFreq, it will
+// write the new maximum frequency if it changed.
+static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length,
+ short unsigned int* outWord, int* maxFreq) {
+ if (freq > *maxFreq) {
+ for (int q = 0; q < length; ++q)
+ outWord[q] = newWord[q];
+ outWord[length] = 0;
+ *maxFreq = freq;
+ }
+}
+
+// Will find the highest frequency of the words like the one passed as an argument,
+// that is, everything that only differs by case/accents.
+int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord,
+ const int length, short unsigned int* outWord) const {
+ int32_t newWord[MAX_WORD_LENGTH_INTERNAL];
+ int depth = 0;
+ int maxFreq = -1;
+ const uint8_t* const root = DICT_ROOT;
+ int stackChildCount[MAX_WORD_LENGTH_INTERNAL];
+ int stackInputIndex[MAX_WORD_LENGTH_INTERNAL];
+ int stackSiblingPos[MAX_WORD_LENGTH_INTERNAL];
+
+ int startPos = 0;
+ stackChildCount[0] = BinaryFormat::getGroupCountAndForwardPointer(root, &startPos);
+ stackInputIndex[0] = 0;
+ stackSiblingPos[0] = startPos;
+ while (depth >= 0) {
+ const int charGroupCount = stackChildCount[depth];
+ int pos = stackSiblingPos[depth];
+ for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) {
+ int inputIndex = stackInputIndex[depth];
+ const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
+ // Test whether all chars in this group match with the word we are searching for. If so,
+ // we want to traverse its children (or if the length match, evaluate its frequency).
+ // Note that this function will output the position regardless, but will only write
+ // into inputIndex if there is a match.
+ const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord,
+ inputIndex, newWord, &inputIndex, &pos);
+ if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) {
+ const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
+ onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq);
+ }
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
+ const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos);
+ // If we had a match and the word has children, we want to traverse them. We don't have
+ // to traverse words longer than the one we are searching for, since they will not match
+ // anyway, so don't traverse unless inputIndex < length.
+ if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) {
+ // Save position for this depth, to get back to this once children are done
+ stackChildCount[depth] = charGroupIndex;
+ stackSiblingPos[depth] = siblingPos;
+ // Prepare stack values for next depth
+ ++depth;
+ int childrenPos = childrenNodePos;
+ stackChildCount[depth] =
+ BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos);
+ stackSiblingPos[depth] = childrenPos;
+ stackInputIndex[depth] = inputIndex;
+ pos = childrenPos;
+ // Go to the next depth level.
+ ++depth;
+ break;
+ } else {
+ // No match, or no children, or word too long to ever match: go the next sibling.
+ pos = siblingPos;
+ }
+ }
+ --depth;
+ }
+ return maxFreq;
+}
+
+int UnigramDictionary::getFrequency(const int32_t* const inWord, const int length) const {
+ const uint8_t* const root = DICT_ROOT;
+ int pos = BinaryFormat::getTerminalPosition(root, inWord, length);
+ if (NOT_VALID_WORD == pos) {
+ return NOT_A_PROBABILITY;
+ }
+ const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
+ const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags));
+ if (hasMultipleChars) {
+ pos = BinaryFormat::skipOtherCharacters(root, pos);
+ } else {
+ BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos);
+ }
+ const int unigramFreq = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
+ return unigramFreq;
+}
+
+// TODO: remove this function.
+int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset,
+ int length) const {
+ return -1;
+}
+
+// ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not.
+// If the return value is false, then the caller should read in the output "nextSiblingPosition"
+// to find out the address of the next sibling node and pass it to a new call of processCurrentNode.
+// It is worthy to note that when false is returned, the output values other than
+// nextSiblingPosition are undefined.
+// If the return value is true, then the caller must proceed to traverse the children of this
+// node. processCurrentNode will output the information about the children: their count in
+// newCount, their position in newChildrenPosition, the traverseAllNodes flag in
+// newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the
+// diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into
+// newOutputIndex. Please also note the following caveat: processCurrentNode does not know when
+// there aren't any more nodes at this level, it merely returns the address of the first byte after
+// the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
+// given level, as output into newCount when traversing this level's parent.
+inline bool UnigramDictionary::processCurrentNode(const int initialPos,
+ const std::map<int, int> *bigramMap, const uint8_t *bigramFilter, Correction *correction,
+ int *newCount, int *newChildrenPosition, int *nextSiblingPosition,
+ WordsPriorityQueuePool *queuePool, const int currentWordIndex) const {
+ if (DEBUG_DICT) {
+ correction->checkState();
+ }
+ int pos = initialPos;
+
+ // Flags contain the following information:
+ // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
+ // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address
+ // is on the specified number of bytes.
+ // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address.
+ // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not.
+ // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children)
+ // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not
+ const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos);
+ const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags));
+ const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags));
+
+ bool needsToInvokeOnTerminal = false;
+
+ // This gets only ONE character from the stream. Next there will be:
+ // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node
+ // else if FLAG_IS_TERMINAL: the frequency
+ // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address
+ // Note that you can't have a node that both is not a terminal and has no children.
+ int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos);
+ assert(NOT_A_CHARACTER != c);
+
+ // We are going to loop through each character and make it look like it's a different
+ // node each time. To do that, we will process characters in this node in order until
+ // we find the character terminator. This is signalled by getCharCode* returning
+ // NOT_A_CHARACTER.
+ // As a special case, if there is only one character in this node, we must not read the
+ // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags.
+ // This way, each loop run will look like a "virtual node".
+ do {
+ // We prefetch the next char. If 'c' is the last char of this node, we will have
+ // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node
+ // should behave as a terminal or not and whether we have children.
+ const int32_t nextc = hasMultipleChars
+ ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER;
+ const bool isLastChar = (NOT_A_CHARACTER == nextc);
+ // If there are more chars in this nodes, then this virtual node is not a terminal.
+ // If we are on the last char, this virtual node is a terminal if this node is.
+ const bool isTerminal = isLastChar && isTerminalNode;
+
+ Correction::CorrectionType stateType = correction->processCharAndCalcState(
+ c, isTerminal);
+ if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL
+ || stateType == Correction::ON_TERMINAL) {
+ needsToInvokeOnTerminal = true;
+ } else if (stateType == Correction::UNRELATED || correction->needsToPrune()) {
+ // We found that this is an unrelated character, so we should give up traversing
+ // this node and its children entirely.
+ // However we may not be on the last virtual node yet so we skip the remaining
+ // characters in this node, the frequency if it's there, read the next sibling
+ // position to output it, then return false.
+ // We don't have to output other values because we return false, as in
+ // "don't traverse children".
+ if (!isLastChar) {
+ pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
+ }
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ *nextSiblingPosition =
+ BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
+ return false;
+ }
+
+ // Prepare for the next character. Promote the prefetched char to current char - the loop
+ // will take care of prefetching the next. If we finally found our last char, nextc will
+ // contain NOT_A_CHARACTER.
+ c = nextc;
+ } while (NOT_A_CHARACTER != c);
+
+ if (isTerminalNode) {
+ // The frequency should be here, because we come here only if this is actually
+ // a terminal node, and we are on its last char.
+ const int unigramFreq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
+ const int childrenAddressPos = BinaryFormat::skipFrequency(flags, pos);
+ const int attributesPos = BinaryFormat::skipChildrenPosition(flags, childrenAddressPos);
+ TerminalAttributes terminalAttributes(DICT_ROOT, flags, attributesPos);
+ // bigramMap contains the bigram frequencies indexed by addresses for fast lookup.
+ // bigramFilter is a bloom filter of said frequencies for even faster rejection.
+ const int probability = BinaryFormat::getProbability(initialPos, bigramMap, bigramFilter,
+ unigramFreq);
+ onTerminal(probability, terminalAttributes, correction, queuePool, needsToInvokeOnTerminal,
+ currentWordIndex);
+
+ // If there are more chars in this node, then this virtual node has children.
+ // If we are on the last char, this virtual node has children if this node has.
+ const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags);
+
+ // This character matched the typed character (enough to traverse the node at least)
+ // so we just evaluated it. Now we should evaluate this virtual node's children - that
+ // is, if it has any. If it has no children, we're done here - so we skip the end of
+ // the node, output the siblings position, and return false "don't traverse children".
+ // Note that !hasChildren implies isLastChar, so we know we don't have to skip any
+ // remaining char in this group for there can't be any.
+ if (!hasChildren) {
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ *nextSiblingPosition =
+ BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
+ return false;
+ }
+
+ // Optimization: Prune out words that are too long compared to how much was typed.
+ if (correction->needsToPrune()) {
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ *nextSiblingPosition =
+ BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
+ if (DEBUG_DICT_FULL) {
+ AKLOGI("Traversing was pruned.");
+ }
+ return false;
+ }
+ }
+
+ // Now we finished processing this node, and we want to traverse children. If there are no
+ // children, we can't come here.
+ assert(BinaryFormat::hasChildrenInFlags(flags));
+
+ // If this node was a terminal it still has the frequency under the pointer (it may have been
+ // read, but not skipped - see readFrequencyWithoutMovingPointer).
+ // Next come the children position, then possibly attributes (attributes are bigrams only for
+ // now, maybe something related to shortcuts in the future).
+ // Once this is read, we still need to output the number of nodes in the immediate children of
+ // this node, so we read and output it before returning true, as in "please traverse children".
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos);
+ *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
+ *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos);
+ *newChildrenPosition = childrenPos;
+ return true;
+}
+
+} // namespace latinime