diff options
Diffstat (limited to 'native/src/unigram_dictionary.cpp')
-rw-r--r-- | native/src/unigram_dictionary.cpp | 729 |
1 files changed, 0 insertions, 729 deletions
diff --git a/native/src/unigram_dictionary.cpp b/native/src/unigram_dictionary.cpp deleted file mode 100644 index 8eb5a9700..000000000 --- a/native/src/unigram_dictionary.cpp +++ /dev/null @@ -1,729 +0,0 @@ -/* -** -** Copyright 2010, The Android Open Source Project -** -** Licensed under the Apache License, Version 2.0 (the "License"); -** you may not use this file except in compliance with the License. -** You may obtain a copy of the License at -** -** http://www.apache.org/licenses/LICENSE-2.0 -** -** Unless required by applicable law or agreed to in writing, software -** distributed under the License is distributed on an "AS IS" BASIS, -** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -** See the License for the specific language governing permissions and -** limitations under the License. -*/ - -#include <assert.h> -#include <string.h> - -#define LOG_TAG "LatinIME: unigram_dictionary.cpp" - -#include "char_utils.h" -#include "dictionary.h" -#include "unigram_dictionary.h" - -#include "binary_format.h" - -namespace latinime { - -const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] = - { { 'a', 'e' }, - { 'o', 'e' }, - { 'u', 'e' } }; - -// TODO: check the header -UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier, - int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars, - const bool isLatestDictVersion) - : DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE), - MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords), - MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion), - TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier), - // TODO : remove this variable. - ROOT_POS(0), - BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(int)), - MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) { - if (DEBUG_DICT) { - LOGI("UnigramDictionary - constructor"); - } - mCorrection = new Correction(typedLetterMultiplier, fullWordMultiplier); -} - -UnigramDictionary::~UnigramDictionary() { - delete mCorrection; -} - -static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize, - const int MAX_PROXIMITY_CHARS) { - return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize; -} - -bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const { - - // There can't be a digraph if we don't have at least 2 characters to examine - if (i + 2 > codesSize) return false; - - // Search for the first char of some digraph - int lastDigraphIndex = -1; - const int thisChar = codes[i * MAX_PROXIMITY_CHARS]; - for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1; - lastDigraphIndex >= 0; --lastDigraphIndex) { - if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break; - } - // No match: return early - if (lastDigraphIndex < 0) return false; - - // It's an interesting digraph if the second char matches too. - return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS]; -} - -// Mostly the same arguments as the non-recursive version, except: -// codes is the original value. It points to the start of the work buffer, and gets passed as is. -// codesSize is the size of the user input (thus, it is the size of codesSrc). -// codesDest is the current point in the work buffer. -// codesSrc is the current point in the user-input, original, content-unmodified buffer. -// codesRemain is the remaining size in codesSrc. -void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo, - const int *xcoordinates, const int* ycoordinates, const int *codesBuffer, - const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain, - const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) { - - if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) { - for (int i = 0; i < codesRemain; ++i) { - if (isDigraph(codesSrc, i, codesRemain)) { - // Found a digraph. We will try both spellings. eg. the word is "pruefen" - - // Copy the word up to the first char of the digraph, then continue processing - // on the remaining part of the word, skipping the second char of the digraph. - // In our example, copy "pru" and continue running on "fen" - // Make i the index of the second char of the digraph for simplicity. Forgetting - // to do that results in an infinite recursion so take care! - ++i; - memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR); - getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, - codesBuffer, codesBufferSize, flags, - codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1, - currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords, - frequencies); - - // Copy the second char of the digraph in place, then continue processing on - // the remaining part of the word. - // In our example, after "pru" in the buffer copy the "e", and continue on "fen" - memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS, - BYTES_IN_ONE_CHAR); - getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, - codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS, - codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, - outWords, frequencies); - return; - } - } - } - - // If we come here, we hit the end of the word: let's check it against the dictionary. - // In our example, we'll come here once for "prufen" and then once for "pruefen". - // If the word contains several digraphs, we'll come it for the product of them. - // eg. if the word is "ueberpruefen" we'll test, in order, against - // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen". - const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain; - if (0 != remainingBytes) - memcpy(codesDest, codesSrc, remainingBytes); - - getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer, - (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies, - flags); -} - -int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, - const int *ycoordinates, const int *codes, const int codesSize, const int flags, - unsigned short *outWords, int *frequencies) { - - if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags) - { // Incrementally tune the word and try all possibilities - int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)]; - getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, - codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies); - } else { // Normal processing - getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize, - outWords, frequencies, flags); - } - - PROF_START(20); - // Get the word count - int suggestedWordsCount = 0; - while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) { - suggestedWordsCount++; - } - - if (DEBUG_DICT) { - LOGI("Returning %d words", suggestedWordsCount); - /// Print the returned words - for (int j = 0; j < suggestedWordsCount; ++j) { -#ifdef FLAG_DBG - short unsigned int* w = mOutputChars + j * MAX_WORD_LENGTH; - char s[MAX_WORD_LENGTH]; - for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i]; - LOGI("%s %i", s, mFrequencies[j]); -#endif - } - } - PROF_END(20); - PROF_CLOSE; - return suggestedWordsCount; -} - -void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo, - const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize, - unsigned short *outWords, int *frequencies, const int flags) { - - PROF_OPEN; - PROF_START(0); - initSuggestions( - proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies); - if (DEBUG_DICT) assert(codesSize == mInputLength); - - const int maxDepth = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH); - mCorrection->initCorrection(mProximityInfo, mInputLength, maxDepth); - PROF_END(0); - - const bool useFullEditDistance = USE_FULL_EDIT_DISTANCE & flags; - // TODO: remove - PROF_START(1); - getSuggestionCandidates(useFullEditDistance); - PROF_END(1); - - PROF_START(2); - // Note: This line is intentionally left blank - PROF_END(2); - - PROF_START(3); - // Note: This line is intentionally left blank - PROF_END(3); - - PROF_START(4); - // Note: This line is intentionally left blank - PROF_END(4); - - PROF_START(5); - // Suggestions with missing space - if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER - && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) { - for (int i = 1; i < codesSize; ++i) { - if (DEBUG_DICT) { - LOGI("--- Suggest missing space characters %d", i); - } - getMissingSpaceWords(mInputLength, i, mCorrection, useFullEditDistance); - } - } - PROF_END(5); - - PROF_START(6); - if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) { - // The first and last "mistyped spaces" are taken care of by excessive character handling - for (int i = 1; i < codesSize - 1; ++i) { - if (DEBUG_DICT) { - LOGI("--- Suggest words with proximity space %d", i); - } - const int x = xcoordinates[i]; - const int y = ycoordinates[i]; - if (DEBUG_PROXIMITY_INFO) { - LOGI("Input[%d] x = %d, y = %d, has space proximity = %d", - i, x, y, proximityInfo->hasSpaceProximity(x, y)); - } - if (proximityInfo->hasSpaceProximity(x, y)) { - getMistypedSpaceWords(mInputLength, i, mCorrection, useFullEditDistance); - } - } - } - PROF_END(6); -} - -void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xCoordinates, - const int *yCoordinates, const int *codes, const int codesSize, - unsigned short *outWords, int *frequencies) { - if (DEBUG_DICT) { - LOGI("initSuggest"); - } - mFrequencies = frequencies; - mOutputChars = outWords; - mInputLength = codesSize; - proximityInfo->setInputParams(codes, codesSize, xCoordinates, yCoordinates); - mProximityInfo = proximityInfo; -} - -static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) { - if (c < nextLettersSize) { - nextLetters[c]++; - } -} - -// TODO: We need to optimize addWord by using STL or something -// TODO: This needs to take an const unsigned short* and not tinker with its contents -bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) { - word[length] = 0; - if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) { -#ifdef FLAG_DBG - char s[length + 1]; - for (int i = 0; i <= length; i++) s[i] = word[i]; - LOGI("Found word = %s, freq = %d", s, frequency); -#endif - } - if (length > MAX_WORD_LENGTH) { - if (DEBUG_DICT) { - LOGI("Exceeded max word length."); - } - return false; - } - - // Find the right insertion point - int insertAt = 0; - while (insertAt < MAX_WORDS) { - // TODO: How should we sort words with the same frequency? - if (frequency > mFrequencies[insertAt]) { - break; - } - insertAt++; - } - if (insertAt < MAX_WORDS) { - if (DEBUG_DICT) { -#ifdef FLAG_DBG - char s[length + 1]; - for (int i = 0; i <= length; i++) s[i] = word[i]; - LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX); -#endif - } - memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]), - (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]), - (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0])); - mFrequencies[insertAt] = frequency; - memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short), - (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short), - (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH); - unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH; - while (length--) { - *dest++ = *word++; - } - *dest = 0; // NULL terminate - if (DEBUG_DICT) { - LOGI("Added word at %d", insertAt); - } - return true; - } - return false; -} - -static const char QUOTE = '\''; -static const char SPACE = ' '; - -void UnigramDictionary::getSuggestionCandidates(const bool useFullEditDistance) { - // TODO: Remove setCorrectionParams - mCorrection->setCorrectionParams(0, 0, 0, - -1 /* spaceProximityPos */, -1 /* missingSpacePos */, useFullEditDistance); - int rootPosition = ROOT_POS; - // Get the number of children of root, then increment the position - int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition); - int outputIndex = 0; - - mCorrection->initCorrectionState(rootPosition, childCount, (mInputLength <= 0)); - - // Depth first search - while (outputIndex >= 0) { - if (mCorrection->initProcessState(outputIndex)) { - int siblingPos = mCorrection->getTreeSiblingPos(outputIndex); - int firstChildPos; - - const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, - mCorrection, &childCount, &firstChildPos, &siblingPos); - // Update next sibling pos - mCorrection->setTreeSiblingPos(outputIndex, siblingPos); - - if (needsToTraverseChildrenNodes) { - // Goes to child node - outputIndex = mCorrection->goDownTree(outputIndex, childCount, firstChildPos); - } - } else { - // Goes to parent sibling node - outputIndex = mCorrection->getTreeParentIndex(outputIndex); - } - } -} - -void UnigramDictionary::getMissingSpaceWords( - const int inputLength, const int missingSpacePos, Correction *correction, - const bool useFullEditDistance) { - correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, - -1 /* transposedPos */, -1 /* spaceProximityPos */, missingSpacePos, - useFullEditDistance); - getSplitTwoWordsSuggestion(inputLength, correction); -} - -void UnigramDictionary::getMistypedSpaceWords( - const int inputLength, const int spaceProximityPos, Correction *correction, - const bool useFullEditDistance) { - correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, - -1 /* transposedPos */, spaceProximityPos, -1 /* missingSpacePos */, - useFullEditDistance); - getSplitTwoWordsSuggestion(inputLength, correction); -} - -inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c, - const int inputIndex, const int skipPos, const int depth) { - const unsigned short userTypedChar = mProximityInfo->getPrimaryCharAt(inputIndex); - // Skip the ' or other letter and continue deeper - return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth; -} - -inline void UnigramDictionary::onTerminal(const int freq, Correction *correction) { - int wordLength; - unsigned short* wordPointer; - const int finalFreq = correction->getFinalFreq(freq, &wordPointer, &wordLength); - if (finalFreq >= 0) { - addWord(wordPointer, wordLength, finalFreq); - } -} - -void UnigramDictionary::getSplitTwoWordsSuggestion( - const int inputLength, Correction* correction) { - const int spaceProximityPos = correction->getSpaceProximityPos(); - const int missingSpacePos = correction->getMissingSpacePos(); - if (DEBUG_DICT) { - int inputCount = 0; - if (spaceProximityPos >= 0) ++inputCount; - if (missingSpacePos >= 0) ++inputCount; - assert(inputCount <= 1); - } - const bool isSpaceProximity = spaceProximityPos >= 0; - const int firstWordStartPos = 0; - const int secondWordStartPos = isSpaceProximity ? (spaceProximityPos + 1) : missingSpacePos; - const int firstWordLength = isSpaceProximity ? spaceProximityPos : missingSpacePos; - const int secondWordLength = isSpaceProximity - ? (inputLength - spaceProximityPos - 1) - : (inputLength - missingSpacePos); - - if (inputLength >= MAX_WORD_LENGTH) return; - if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos - || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength) - return; - - const int newWordLength = firstWordLength + secondWordLength + 1; - // Allocating variable length array on stack - unsigned short word[newWordLength]; - const int firstFreq = getMostFrequentWordLike(firstWordStartPos, firstWordLength, mWord); - if (DEBUG_DICT) { - LOGI("First freq: %d", firstFreq); - } - if (firstFreq <= 0) return; - - for (int i = 0; i < firstWordLength; ++i) { - word[i] = mWord[i]; - } - - const int secondFreq = getMostFrequentWordLike(secondWordStartPos, secondWordLength, mWord); - if (DEBUG_DICT) { - LOGI("Second freq: %d", secondFreq); - } - if (secondFreq <= 0) return; - - word[firstWordLength] = SPACE; - for (int i = (firstWordLength + 1); i < newWordLength; ++i) { - word[i] = mWord[i - firstWordLength - 1]; - } - - const int pairFreq = mCorrection->getFreqForSplitTwoWords(firstFreq, secondFreq, word); - if (DEBUG_DICT) { - LOGI("Split two words: %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength); - } - addWord(word, newWordLength, pairFreq); - return; -} - -// Wrapper for getMostFrequentWordLikeInner, which matches it to the previous -// interface. -inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex, - const int inputLength, unsigned short *word) { - uint16_t inWord[inputLength]; - - for (int i = 0; i < inputLength; ++i) { - inWord[i] = (uint16_t)mProximityInfo->getPrimaryCharAt(startInputIndex + i); - } - return getMostFrequentWordLikeInner(inWord, inputLength, word); -} - -// This function will take the position of a character array within a CharGroup, -// and check it actually like-matches the word in inWord starting at startInputIndex, -// that is, it matches it with case and accents squashed. -// The function returns true if there was a full match, false otherwise. -// The function will copy on-the-fly the characters in the CharGroup to outNewWord. -// It will also place the end position of the array in outPos; in outInputIndex, -// it will place the index of the first char AFTER the match if there was a match, -// and the initial position if there was not. It makes sense because if there was -// a match we want to continue searching, but if there was not, we want to go to -// the next CharGroup. -// In and out parameters may point to the same location. This function takes care -// not to use any input parameters after it wrote into its outputs. -static inline bool testCharGroupForContinuedLikeness(const uint8_t flags, - const uint8_t* const root, const int startPos, - const uint16_t* const inWord, const int startInputIndex, - int32_t* outNewWord, int* outInputIndex, int* outPos) { - const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags)); - int pos = startPos; - int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); - int32_t baseChar = Dictionary::toBaseLowerCase(character); - const uint16_t wChar = Dictionary::toBaseLowerCase(inWord[startInputIndex]); - - if (baseChar != wChar) { - *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos; - *outInputIndex = startInputIndex; - return false; - } - int inputIndex = startInputIndex; - outNewWord[inputIndex] = character; - if (hasMultipleChars) { - character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); - while (NOT_A_CHARACTER != character) { - baseChar = Dictionary::toBaseLowerCase(character); - if (Dictionary::toBaseLowerCase(inWord[++inputIndex]) != baseChar) { - *outPos = BinaryFormat::skipOtherCharacters(root, pos); - *outInputIndex = startInputIndex; - return false; - } - outNewWord[inputIndex] = character; - character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); - } - } - *outInputIndex = inputIndex + 1; - *outPos = pos; - return true; -} - -// This function is invoked when a word like the word searched for is found. -// It will compare the frequency to the max frequency, and if greater, will -// copy the word into the output buffer. In output value maxFreq, it will -// write the new maximum frequency if it changed. -static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length, - short unsigned int* outWord, int* maxFreq) { - if (freq > *maxFreq) { - for (int q = 0; q < length; ++q) - outWord[q] = newWord[q]; - outWord[length] = 0; - *maxFreq = freq; - } -} - -// Will find the highest frequency of the words like the one passed as an argument, -// that is, everything that only differs by case/accents. -int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord, - const int length, short unsigned int* outWord) { - int32_t newWord[MAX_WORD_LENGTH_INTERNAL]; - int depth = 0; - int maxFreq = -1; - const uint8_t* const root = DICT_ROOT; - - mStackChildCount[0] = root[0]; - mStackInputIndex[0] = 0; - mStackSiblingPos[0] = 1; - while (depth >= 0) { - const int charGroupCount = mStackChildCount[depth]; - int pos = mStackSiblingPos[depth]; - for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) { - int inputIndex = mStackInputIndex[depth]; - const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); - // Test whether all chars in this group match with the word we are searching for. If so, - // we want to traverse its children (or if the length match, evaluate its frequency). - // Note that this function will output the position regardless, but will only write - // into inputIndex if there is a match. - const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord, - inputIndex, newWord, &inputIndex, &pos); - if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) { - const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos); - onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq); - } - pos = BinaryFormat::skipFrequency(flags, pos); - const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos); - const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos); - // If we had a match and the word has children, we want to traverse them. We don't have - // to traverse words longer than the one we are searching for, since they will not match - // anyway, so don't traverse unless inputIndex < length. - if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) { - // Save position for this depth, to get back to this once children are done - mStackChildCount[depth] = charGroupIndex; - mStackSiblingPos[depth] = siblingPos; - // Prepare stack values for next depth - ++depth; - int childrenPos = childrenNodePos; - mStackChildCount[depth] = - BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos); - mStackSiblingPos[depth] = childrenPos; - mStackInputIndex[depth] = inputIndex; - pos = childrenPos; - // Go to the next depth level. - ++depth; - break; - } else { - // No match, or no children, or word too long to ever match: go the next sibling. - pos = siblingPos; - } - } - --depth; - } - return maxFreq; -} - -bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const { - return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length); -} - -// TODO: remove this function. -int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset, - int length) const { - return -1; -} - -// ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not. -// If the return value is false, then the caller should read in the output "nextSiblingPosition" -// to find out the address of the next sibling node and pass it to a new call of processCurrentNode. -// It is worthy to note that when false is returned, the output values other than -// nextSiblingPosition are undefined. -// If the return value is true, then the caller must proceed to traverse the children of this -// node. processCurrentNode will output the information about the children: their count in -// newCount, their position in newChildrenPosition, the traverseAllNodes flag in -// newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the -// diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into -// newOutputIndex. Please also note the following caveat: processCurrentNode does not know when -// there aren't any more nodes at this level, it merely returns the address of the first byte after -// the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any -// given level, as output into newCount when traversing this level's parent. -inline bool UnigramDictionary::processCurrentNode(const int initialPos, - Correction *correction, int *newCount, - int *newChildrenPosition, int *nextSiblingPosition) { - if (DEBUG_DICT) { - correction->checkState(); - } - int pos = initialPos; - - // Flags contain the following information: - // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits: - // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address - // is on the specified number of bytes. - // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address. - // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not. - // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children) - // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not - const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos); - const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags)); - const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags)); - - bool needsToInvokeOnTerminal = false; - - // This gets only ONE character from the stream. Next there will be: - // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node - // else if FLAG_IS_TERMINAL: the frequency - // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address - // Note that you can't have a node that both is not a terminal and has no children. - int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos); - assert(NOT_A_CHARACTER != c); - - // We are going to loop through each character and make it look like it's a different - // node each time. To do that, we will process characters in this node in order until - // we find the character terminator. This is signalled by getCharCode* returning - // NOT_A_CHARACTER. - // As a special case, if there is only one character in this node, we must not read the - // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags. - // This way, each loop run will look like a "virtual node". - do { - // We prefetch the next char. If 'c' is the last char of this node, we will have - // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node - // should behave as a terminal or not and whether we have children. - const int32_t nextc = hasMultipleChars - ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER; - const bool isLastChar = (NOT_A_CHARACTER == nextc); - // If there are more chars in this nodes, then this virtual node is not a terminal. - // If we are on the last char, this virtual node is a terminal if this node is. - const bool isTerminal = isLastChar && isTerminalNode; - - Correction::CorrectionType stateType = correction->processCharAndCalcState( - c, isTerminal); - if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL - || stateType == Correction::ON_TERMINAL) { - needsToInvokeOnTerminal = true; - } else if (stateType == Correction::UNRELATED) { - // We found that this is an unrelated character, so we should give up traversing - // this node and its children entirely. - // However we may not be on the last virtual node yet so we skip the remaining - // characters in this node, the frequency if it's there, read the next sibling - // position to output it, then return false. - // We don't have to output other values because we return false, as in - // "don't traverse children". - if (!isLastChar) { - pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos); - } - pos = BinaryFormat::skipFrequency(flags, pos); - *nextSiblingPosition = - BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); - return false; - } - - // Prepare for the next character. Promote the prefetched char to current char - the loop - // will take care of prefetching the next. If we finally found our last char, nextc will - // contain NOT_A_CHARACTER. - c = nextc; - } while (NOT_A_CHARACTER != c); - - if (isTerminalNode) { - if (needsToInvokeOnTerminal) { - // The frequency should be here, because we come here only if this is actually - // a terminal node, and we are on its last char. - const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos); - onTerminal(freq, mCorrection); - } - - // If there are more chars in this node, then this virtual node has children. - // If we are on the last char, this virtual node has children if this node has. - const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags); - - // This character matched the typed character (enough to traverse the node at least) - // so we just evaluated it. Now we should evaluate this virtual node's children - that - // is, if it has any. If it has no children, we're done here - so we skip the end of - // the node, output the siblings position, and return false "don't traverse children". - // Note that !hasChildren implies isLastChar, so we know we don't have to skip any - // remaining char in this group for there can't be any. - if (!hasChildren) { - pos = BinaryFormat::skipFrequency(flags, pos); - *nextSiblingPosition = - BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); - return false; - } - - // Optimization: Prune out words that are too long compared to how much was typed. - if (correction->needsToPrune()) { - pos = BinaryFormat::skipFrequency(flags, pos); - *nextSiblingPosition = - BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); - if (DEBUG_DICT_FULL) { - LOGI("Traversing was pruned."); - } - return false; - } - } - - // Now we finished processing this node, and we want to traverse children. If there are no - // children, we can't come here. - assert(BinaryFormat::hasChildrenInFlags(flags)); - - // If this node was a terminal it still has the frequency under the pointer (it may have been - // read, but not skipped - see readFrequencyWithoutMovingPointer). - // Next come the children position, then possibly attributes (attributes are bigrams only for - // now, maybe something related to shortcuts in the future). - // Once this is read, we still need to output the number of nodes in the immediate children of - // this node, so we read and output it before returning true, as in "please traverse children". - pos = BinaryFormat::skipFrequency(flags, pos); - int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos); - *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); - *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos); - *newChildrenPosition = childrenPos; - return true; -} - -} // namespace latinime |