aboutsummaryrefslogtreecommitdiffstats
path: root/native/src/unigram_dictionary.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'native/src/unigram_dictionary.cpp')
-rw-r--r--native/src/unigram_dictionary.cpp838
1 files changed, 123 insertions, 715 deletions
diff --git a/native/src/unigram_dictionary.cpp b/native/src/unigram_dictionary.cpp
index afa8bc545..bbfaea454 100644
--- a/native/src/unigram_dictionary.cpp
+++ b/native/src/unigram_dictionary.cpp
@@ -24,9 +24,7 @@
#include "dictionary.h"
#include "unigram_dictionary.h"
-#ifdef NEW_DICTIONARY_FORMAT
#include "binary_format.h"
-#endif // NEW_DICTIONARY_FORMAT
namespace latinime {
@@ -39,28 +37,23 @@ const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier,
int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars,
const bool isLatestDictVersion)
-#ifndef NEW_DICTIONARY_FORMAT
- : DICT_ROOT(streamStart),
-#else // NEW_DICTIONARY_FORMAT
: DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE),
-#endif // NEW_DICTIONARY_FORMAT
MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion),
TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
-#ifndef NEW_DICTIONARY_FORMAT
- ROOT_POS(isLatestDictVersion ? DICTIONARY_HEADER_SIZE : 0),
-#else // NEW_DICTIONARY_FORMAT
// TODO : remove this variable.
ROOT_POS(0),
-#endif // NEW_DICTIONARY_FORMAT
BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(int)),
MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) {
if (DEBUG_DICT) {
LOGI("UnigramDictionary - constructor");
}
+ mCorrection = new Correction(typedLetterMultiplier, fullWordMultiplier);
}
-UnigramDictionary::~UnigramDictionary() {}
+UnigramDictionary::~UnigramDictionary() {
+ delete mCorrection;
+}
static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize,
const int MAX_PROXIMITY_CHARS) {
@@ -174,12 +167,6 @@ int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *x
LOGI("%s %i", s, mFrequencies[j]);
#endif
}
- LOGI("Next letters: ");
- for (int k = 0; k < NEXT_LETTERS_SIZE; k++) {
- if (mNextLettersFrequency[k] > 0) {
- LOGI("%c = %d,", k, mNextLettersFrequency[k]);
- }
- }
}
PROF_END(20);
PROF_CLOSE;
@@ -196,11 +183,12 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies);
if (DEBUG_DICT) assert(codesSize == mInputLength);
- const int MAX_DEPTH = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
+ const int maxDepth = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
+ mCorrection->initCorrection(mProximityInfo, mInputLength, maxDepth);
PROF_END(0);
PROF_START(1);
- getSuggestionCandidates(-1, -1, -1, mNextLettersFrequency, NEXT_LETTERS_SIZE, MAX_DEPTH);
+ getSuggestionCandidates(-1, -1, -1);
PROF_END(1);
PROF_START(2);
@@ -210,7 +198,7 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
if (DEBUG_DICT) {
LOGI("--- Suggest missing characters %d", i);
}
- getSuggestionCandidates(i, -1, -1, NULL, 0, MAX_DEPTH);
+ getSuggestionCandidates(i, -1, -1);
}
}
PROF_END(2);
@@ -223,7 +211,7 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
if (DEBUG_DICT) {
LOGI("--- Suggest excessive characters %d", i);
}
- getSuggestionCandidates(-1, i, -1, NULL, 0, MAX_DEPTH);
+ getSuggestionCandidates(-1, i, -1);
}
}
PROF_END(3);
@@ -236,7 +224,7 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
if (DEBUG_DICT) {
LOGI("--- Suggest transposed characters %d", i);
}
- getSuggestionCandidates(-1, -1, i, NULL, 0, mInputLength - 1);
+ getSuggestionCandidates(-1, -1, i);
}
}
PROF_END(4);
@@ -249,7 +237,7 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
if (DEBUG_DICT) {
LOGI("--- Suggest missing space characters %d", i);
}
- getMissingSpaceWords(mInputLength, i);
+ getMissingSpaceWords(mInputLength, i, mCorrection);
}
}
PROF_END(5);
@@ -268,7 +256,7 @@ void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
i, x, y, proximityInfo->hasSpaceProximity(x, y));
}
if (proximityInfo->hasSpaceProximity(x, y)) {
- getMistypedSpaceWords(mInputLength, i);
+ getMistypedSpaceWords(mInputLength, i, mCorrection);
}
}
}
@@ -284,7 +272,6 @@ void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int
mFrequencies = frequencies;
mOutputChars = outWords;
mInputLength = codesSize;
- mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2;
proximityInfo->setInputParams(codes, codesSize);
mProximityInfo = proximityInfo;
}
@@ -354,70 +341,43 @@ static const char QUOTE = '\'';
static const char SPACE = ' ';
void UnigramDictionary::getSuggestionCandidates(const int skipPos,
- const int excessivePos, const int transposedPos, int *nextLetters,
- const int nextLettersSize, const int maxDepth) {
+ const int excessivePos, const int transposedPos) {
if (DEBUG_DICT) {
- LOGI("getSuggestionCandidates %d", maxDepth);
assert(transposedPos + 1 < mInputLength);
assert(excessivePos < mInputLength);
assert(missingPos < mInputLength);
}
+ mCorrection->setCorrectionParams(skipPos, excessivePos, transposedPos,
+ -1 /* spaceProximityPos */, -1 /* missingSpacePos */);
int rootPosition = ROOT_POS;
// Get the number of children of root, then increment the position
int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition);
- int depth = 0;
+ int outputIndex = 0;
- mStackChildCount[0] = childCount;
- mStackTraverseAll[0] = (mInputLength <= 0);
- mStackNodeFreq[0] = 1;
- mStackInputIndex[0] = 0;
- mStackDiffs[0] = 0;
- mStackSiblingPos[0] = rootPosition;
- mStackOutputIndex[0] = 0;
+ mCorrection->initCorrectionState(rootPosition, childCount, (mInputLength <= 0));
// Depth first search
- while (depth >= 0) {
- if (mStackChildCount[depth] > 0) {
- --mStackChildCount[depth];
- bool traverseAllNodes = mStackTraverseAll[depth];
- int matchWeight = mStackNodeFreq[depth];
- int inputIndex = mStackInputIndex[depth];
- int diffs = mStackDiffs[depth];
- int siblingPos = mStackSiblingPos[depth];
- int outputIndex = mStackOutputIndex[depth];
+ while (outputIndex >= 0) {
+ if (mCorrection->initProcessState(outputIndex)) {
+ int siblingPos = mCorrection->getTreeSiblingPos(outputIndex);
int firstChildPos;
- // depth will never be greater than maxDepth because in that case,
- // needsToTraverseChildrenNodes should be false
- const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, outputIndex,
- maxDepth, traverseAllNodes, matchWeight, inputIndex, diffs, skipPos,
- excessivePos, transposedPos, nextLetters, nextLettersSize, &childCount,
- &firstChildPos, &traverseAllNodes, &matchWeight, &inputIndex, &diffs,
- &siblingPos, &outputIndex);
+
+ const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos,
+ mCorrection, &childCount, &firstChildPos, &siblingPos);
// Update next sibling pos
- mStackSiblingPos[depth] = siblingPos;
+ mCorrection->setTreeSiblingPos(outputIndex, siblingPos);
+
if (needsToTraverseChildrenNodes) {
// Goes to child node
- ++depth;
- mStackChildCount[depth] = childCount;
- mStackTraverseAll[depth] = traverseAllNodes;
- mStackNodeFreq[depth] = matchWeight;
- mStackInputIndex[depth] = inputIndex;
- mStackDiffs[depth] = diffs;
- mStackSiblingPos[depth] = firstChildPos;
- mStackOutputIndex[depth] = outputIndex;
+ outputIndex = mCorrection->goDownTree(outputIndex, childCount, firstChildPos);
}
} else {
// Goes to parent sibling node
- --depth;
+ outputIndex = mCorrection->getTreeParentIndex(outputIndex);
}
}
}
-static const int TWO_31ST_DIV_255 = S_INT_MAX / 255;
-static inline int capped255MultForFullMatchAccentsOrCapitalizationDifference(const int num) {
- return (num < TWO_31ST_DIV_255 ? 255 * num : S_INT_MAX);
-}
-
static const int TWO_31ST_DIV_2 = S_INT_MAX / 2;
inline static void multiplyIntCapped(const int multiplier, int *base) {
const int temp = *base;
@@ -432,149 +392,18 @@ inline static void multiplyIntCapped(const int multiplier, int *base) {
}
}
-inline static int powerIntCapped(const int base, const int n) {
- if (base == 2) {
- return n < 31 ? 1 << n : S_INT_MAX;
- } else {
- int ret = base;
- for (int i = 1; i < n; ++i) multiplyIntCapped(base, &ret);
- return ret;
- }
+void UnigramDictionary::getMissingSpaceWords(
+ const int inputLength, const int missingSpacePos, Correction *correction) {
+ correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */,
+ -1 /* transposedPos */, -1 /* spaceProximityPos */, missingSpacePos);
+ getSplitTwoWordsSuggestion(inputLength, correction);
}
-inline static void multiplyRate(const int rate, int *freq) {
- if (*freq != S_INT_MAX) {
- if (*freq > 1000000) {
- *freq /= 100;
- multiplyIntCapped(rate, freq);
- } else {
- multiplyIntCapped(rate, freq);
- *freq /= 100;
- }
- }
-}
-
-inline static int calcFreqForSplitTwoWords(
- const int typedLetterMultiplier, const int firstWordLength, const int secondWordLength,
- const int firstFreq, const int secondFreq, const bool isSpaceProximity) {
- if (firstWordLength == 0 || secondWordLength == 0) {
- return 0;
- }
- const int firstDemotionRate = 100 - 100 / (firstWordLength + 1);
- int tempFirstFreq = firstFreq;
- multiplyRate(firstDemotionRate, &tempFirstFreq);
-
- const int secondDemotionRate = 100 - 100 / (secondWordLength + 1);
- int tempSecondFreq = secondFreq;
- multiplyRate(secondDemotionRate, &tempSecondFreq);
-
- const int totalLength = firstWordLength + secondWordLength;
-
- // Promote pairFreq with multiplying by 2, because the word length is the same as the typed
- // length.
- int totalFreq = tempFirstFreq + tempSecondFreq;
-
- // This is a workaround to try offsetting the not-enough-demotion which will be done in
- // calcNormalizedScore in Utils.java.
- // In calcNormalizedScore the score will be demoted by (1 - 1 / length)
- // but we demoted only (1 - 1 / (length + 1)) so we will additionally adjust freq by
- // (1 - 1 / length) / (1 - 1 / (length + 1)) = (1 - 1 / (length * length))
- const int normalizedScoreNotEnoughDemotionAdjustment = 100 - 100 / (totalLength * totalLength);
- multiplyRate(normalizedScoreNotEnoughDemotionAdjustment, &totalFreq);
-
- // At this moment, totalFreq is calculated by the following formula:
- // (firstFreq * (1 - 1 / (firstWordLength + 1)) + secondFreq * (1 - 1 / (secondWordLength + 1)))
- // * (1 - 1 / totalLength) / (1 - 1 / (totalLength + 1))
-
- multiplyIntCapped(powerIntCapped(typedLetterMultiplier, totalLength), &totalFreq);
-
- // This is another workaround to offset the demotion which will be done in
- // calcNormalizedScore in Utils.java.
- // In calcNormalizedScore the score will be demoted by (1 - 1 / length) so we have to promote
- // the same amount because we already have adjusted the synthetic freq of this "missing or
- // mistyped space" suggestion candidate above in this method.
- const int normalizedScoreDemotionRateOffset = (100 + 100 / totalLength);
- multiplyRate(normalizedScoreDemotionRateOffset, &totalFreq);
-
- if (isSpaceProximity) {
- // A word pair with one space proximity correction
- if (DEBUG_DICT) {
- LOGI("Found a word pair with space proximity correction.");
- }
- multiplyIntCapped(typedLetterMultiplier, &totalFreq);
- multiplyRate(WORDS_WITH_PROXIMITY_CHARACTER_DEMOTION_RATE, &totalFreq);
- }
-
- multiplyRate(WORDS_WITH_MISSING_SPACE_CHARACTER_DEMOTION_RATE, &totalFreq);
- return totalFreq;
-}
-
-bool UnigramDictionary::getMissingSpaceWords(const int inputLength, const int missingSpacePos) {
- return getSplitTwoWordsSuggestion(
- inputLength, 0, missingSpacePos, missingSpacePos, inputLength - missingSpacePos, false);
-}
-
-bool UnigramDictionary::getMistypedSpaceWords(const int inputLength, const int spaceProximityPos) {
- return getSplitTwoWordsSuggestion(
- inputLength, 0, spaceProximityPos, spaceProximityPos + 1,
- inputLength - spaceProximityPos - 1, true);
-}
-
-inline int UnigramDictionary::calculateFinalFreq(const int inputIndex, const int depth,
- const int matchWeight, const int skipPos, const int excessivePos, const int transposedPos,
- const int freq, const bool sameLength) const {
- // TODO: Demote by edit distance
- int finalFreq = freq * matchWeight;
- if (skipPos >= 0) {
- if (mInputLength >= 2) {
- const int demotionRate = WORDS_WITH_MISSING_CHARACTER_DEMOTION_RATE
- * (10 * mInputLength - WORDS_WITH_MISSING_CHARACTER_DEMOTION_START_POS_10X)
- / (10 * mInputLength
- - WORDS_WITH_MISSING_CHARACTER_DEMOTION_START_POS_10X + 10);
- if (DEBUG_DICT_FULL) {
- LOGI("Demotion rate for missing character is %d.", demotionRate);
- }
- multiplyRate(demotionRate, &finalFreq);
- } else {
- finalFreq = 0;
- }
- }
- if (transposedPos >= 0) multiplyRate(
- WORDS_WITH_TRANSPOSED_CHARACTERS_DEMOTION_RATE, &finalFreq);
- if (excessivePos >= 0) {
- multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_DEMOTION_RATE, &finalFreq);
- if (!mProximityInfo->existsAdjacentProximityChars(inputIndex)) {
- // If an excessive character is not adjacent to the left char or the right char,
- // we will demote this word.
- multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_OUT_OF_PROXIMITY_DEMOTION_RATE, &finalFreq);
- }
- }
- int lengthFreq = TYPED_LETTER_MULTIPLIER;
- multiplyIntCapped(powerIntCapped(TYPED_LETTER_MULTIPLIER, depth), &lengthFreq);
- if (lengthFreq == matchWeight) {
- // Full exact match
- if (depth > 1) {
- if (DEBUG_DICT) {
- LOGI("Found full matched word.");
- }
- multiplyRate(FULL_MATCHED_WORDS_PROMOTION_RATE, &finalFreq);
- }
- if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0) {
- finalFreq = capped255MultForFullMatchAccentsOrCapitalizationDifference(finalFreq);
- }
- } else if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0 && depth > 0) {
- // A word with proximity corrections
- if (DEBUG_DICT) {
- LOGI("Found one proximity correction.");
- }
- multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &finalFreq);
- multiplyRate(WORDS_WITH_PROXIMITY_CHARACTER_DEMOTION_RATE, &finalFreq);
- }
- if (DEBUG_DICT) {
- LOGI("calc: %d, %d", depth, sameLength);
- }
- if (sameLength) multiplyIntCapped(FULL_WORD_MULTIPLIER, &finalFreq);
- return finalFreq;
+void UnigramDictionary::getMistypedSpaceWords(
+ const int inputLength, const int spaceProximityPos, Correction *correction) {
+ correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */,
+ -1 /* transposedPos */, spaceProximityPos, -1 /* missingSpacePos */);
+ getSplitTwoWordsSuggestion(inputLength, correction);
}
inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
@@ -584,35 +413,38 @@ inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth;
}
-
-inline void UnigramDictionary::onTerminal(unsigned short int* word, const int depth,
- const uint8_t* const root, const uint8_t flags, const int pos,
- const int inputIndex, const int matchWeight, const int skipPos,
- const int excessivePos, const int transposedPos, const int freq, const bool sameLength,
- int* nextLetters, const int nextLettersSize) {
-
- const bool isSameAsTyped = sameLength ? mProximityInfo->sameAsTyped(word, depth + 1) : false;
- if (isSameAsTyped) return;
-
- if (depth >= MIN_SUGGEST_DEPTH) {
- const int finalFreq = calculateFinalFreq(inputIndex, depth, matchWeight, skipPos,
- excessivePos, transposedPos, freq, sameLength);
- if (!isSameAsTyped)
- addWord(word, depth + 1, finalFreq);
+inline void UnigramDictionary::onTerminal(const int freq, Correction *correction) {
+ int wordLength;
+ unsigned short* wordPointer;
+ const int finalFreq = correction->getFinalFreq(freq, &wordPointer, &wordLength);
+ if (finalFreq >= 0) {
+ addWord(wordPointer, wordLength, finalFreq);
}
+}
- if (sameLength && depth >= mInputLength && skipPos < 0) {
- registerNextLetter(word[mInputLength], nextLetters, nextLettersSize);
+void UnigramDictionary::getSplitTwoWordsSuggestion(
+ const int inputLength, Correction* correction) {
+ const int spaceProximityPos = correction->getSpaceProximityPos();
+ const int missingSpacePos = correction->getMissingSpacePos();
+ if (DEBUG_DICT) {
+ int inputCount = 0;
+ if (spaceProximityPos >= 0) ++inputCount;
+ if (missingSpacePos >= 0) ++inputCount;
+ assert(inputCount <= 1);
}
-}
+ const bool isSpaceProximity = spaceProximityPos >= 0;
+ const int firstWordStartPos = 0;
+ const int secondWordStartPos = isSpaceProximity ? (spaceProximityPos + 1) : missingSpacePos;
+ const int firstWordLength = isSpaceProximity ? spaceProximityPos : missingSpacePos;
+ const int secondWordLength = isSpaceProximity
+ ? (inputLength - spaceProximityPos - 1)
+ : (inputLength - missingSpacePos);
-bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength,
- const int firstWordStartPos, const int firstWordLength, const int secondWordStartPos,
- const int secondWordLength, const bool isSpaceProximity) {
- if (inputLength >= MAX_WORD_LENGTH) return false;
+ if (inputLength >= MAX_WORD_LENGTH) return;
if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos
|| firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength)
- return false;
+ return;
+
const int newWordLength = firstWordLength + secondWordLength + 1;
// Allocating variable length array on stack
unsigned short word[newWordLength];
@@ -620,7 +452,7 @@ bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength,
if (DEBUG_DICT) {
LOGI("First freq: %d", firstFreq);
}
- if (firstFreq <= 0) return false;
+ if (firstFreq <= 0) return;
for (int i = 0; i < firstWordLength; ++i) {
word[i] = mWord[i];
@@ -630,299 +462,21 @@ bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength,
if (DEBUG_DICT) {
LOGI("Second freq: %d", secondFreq);
}
- if (secondFreq <= 0) return false;
+ if (secondFreq <= 0) return;
word[firstWordLength] = SPACE;
for (int i = (firstWordLength + 1); i < newWordLength; ++i) {
word[i] = mWord[i - firstWordLength - 1];
}
- int pairFreq = calcFreqForSplitTwoWords(TYPED_LETTER_MULTIPLIER, firstWordLength,
- secondWordLength, firstFreq, secondFreq, isSpaceProximity);
+ const int pairFreq = mCorrection->getFreqForSplitTwoWords(firstFreq, secondFreq);
if (DEBUG_DICT) {
- LOGI("Split two words: %d, %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength,
- TYPED_LETTER_MULTIPLIER);
+ LOGI("Split two words: %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength);
}
addWord(word, newWordLength, pairFreq);
- return true;
-}
-
-#ifndef NEW_DICTIONARY_FORMAT
-// The following functions will be entirely replaced with new implementations.
-void UnigramDictionary::getWordsOld(const int initialPos, const int inputLength, const int skipPos,
- const int excessivePos, const int transposedPos,int *nextLetters,
- const int nextLettersSize) {
- int initialPosition = initialPos;
- const int count = Dictionary::getCount(DICT_ROOT, &initialPosition);
- getWordsRec(count, initialPosition, 0,
- min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH),
- mInputLength <= 0, 1, 0, 0, skipPos, excessivePos, transposedPos, nextLetters,
- nextLettersSize);
-}
-
-void UnigramDictionary::getWordsRec(const int childrenCount, const int pos, const int depth,
- const int maxDepth, const bool traverseAllNodes, const int matchWeight,
- const int inputIndex, const int diffs, const int skipPos, const int excessivePos,
- const int transposedPos, int *nextLetters, const int nextLettersSize) {
- int siblingPos = pos;
- for (int i = 0; i < childrenCount; ++i) {
- int newCount;
- int newChildPosition;
- bool newTraverseAllNodes;
- int newMatchRate;
- int newInputIndex;
- int newDiffs;
- int newSiblingPos;
- int newOutputIndex;
- const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth, maxDepth,
- traverseAllNodes, matchWeight, inputIndex, diffs,
- skipPos, excessivePos, transposedPos,
- nextLetters, nextLettersSize,
- &newCount, &newChildPosition, &newTraverseAllNodes, &newMatchRate,
- &newInputIndex, &newDiffs, &newSiblingPos, &newOutputIndex);
- siblingPos = newSiblingPos;
-
- if (needsToTraverseChildrenNodes) {
- getWordsRec(newCount, newChildPosition, newOutputIndex, maxDepth, newTraverseAllNodes,
- newMatchRate, newInputIndex, newDiffs, skipPos, excessivePos, transposedPos,
- nextLetters, nextLettersSize);
- }
- }
-}
-
-inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex,
- const int inputLength, unsigned short *word) {
- int pos = ROOT_POS;
- int count = Dictionary::getCount(DICT_ROOT, &pos);
- int maxFreq = 0;
- int depth = 0;
- unsigned short newWord[MAX_WORD_LENGTH_INTERNAL];
- bool terminal = false;
-
- mStackChildCount[0] = count;
- mStackSiblingPos[0] = pos;
-
- while (depth >= 0) {
- if (mStackChildCount[depth] > 0) {
- --mStackChildCount[depth];
- int firstChildPos;
- int newFreq;
- int siblingPos = mStackSiblingPos[depth];
- const bool needsToTraverseChildrenNodes = processCurrentNodeForExactMatch(siblingPos,
- startInputIndex, depth, newWord, &firstChildPos, &count, &terminal, &newFreq,
- &siblingPos);
- mStackSiblingPos[depth] = siblingPos;
- if (depth == (inputLength - 1)) {
- // Traverse sibling node
- if (terminal) {
- if (newFreq > maxFreq) {
- for (int i = 0; i < inputLength; ++i) word[i] = newWord[i];
- if (DEBUG_DICT && DEBUG_NODE) {
-#ifdef FLAG_DBG
- char s[inputLength + 1];
- for (int i = 0; i < inputLength; ++i) s[i] = word[i];
- s[inputLength] = 0;
- LOGI("New missing space word found: %d > %d (%s), %d, %d",
- newFreq, maxFreq, s, inputLength, depth);
-#endif
- }
- maxFreq = newFreq;
- }
- }
- } else if (needsToTraverseChildrenNodes) {
- // Traverse children nodes
- ++depth;
- mStackChildCount[depth] = count;
- mStackSiblingPos[depth] = firstChildPos;
- }
- } else {
- // Traverse parent node
- --depth;
- }
- }
-
- word[inputLength] = 0;
- return maxFreq;
+ return;
}
-inline bool UnigramDictionary::processCurrentNodeForExactMatch(const int firstChildPos,
- const int startInputIndex, const int depth, unsigned short *word, int *newChildPosition,
- int *newCount, bool *newTerminal, int *newFreq, int *siblingPos) {
- const int inputIndex = startInputIndex + depth;
- unsigned short c;
- *siblingPos = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, firstChildPos,
- &c, newChildPosition, newTerminal, newFreq);
- const unsigned int inputC = mProximityInfo->getPrimaryCharAt(inputIndex);
- if (DEBUG_DICT) {
- assert(inputC <= U_SHORT_MAX);
- }
- const unsigned short baseLowerC = Dictionary::toBaseLowerCase(c);
- const bool matched = (inputC == baseLowerC || inputC == c);
- const bool hasChild = *newChildPosition != 0;
- if (matched) {
- word[depth] = c;
- if (DEBUG_DICT && DEBUG_NODE) {
- LOGI("Node(%c, %c)<%d>, %d, %d", inputC, c, matched, hasChild, *newFreq);
- if (*newTerminal) {
- LOGI("Terminal %d", *newFreq);
- }
- }
- if (hasChild) {
- *newCount = Dictionary::getCount(DICT_ROOT, newChildPosition);
- return true;
- } else {
- return false;
- }
- } else {
- // If this node is not user typed character, this method treats this word as unmatched.
- // Thus newTerminal shouldn't be true.
- *newTerminal = false;
- return false;
- }
-}
-
-// TODO: use uint32_t instead of unsigned short
-bool UnigramDictionary::isValidWord(unsigned short *word, int length) {
- if (IS_LATEST_DICT_VERSION) {
- return (getBigramPosition(DICTIONARY_HEADER_SIZE, word, 0, length) != NOT_VALID_WORD);
- } else {
- return (getBigramPosition(0, word, 0, length) != NOT_VALID_WORD);
- }
-}
-
-
-// Require strict exact match.
-int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset,
- int length) const {
- // returns address of bigram data of that word
- // return -99 if not found
-
- int count = Dictionary::getCount(DICT_ROOT, &pos);
- unsigned short currentChar = (unsigned short) word[offset];
- for (int j = 0; j < count; j++) {
- unsigned short c = Dictionary::getChar(DICT_ROOT, &pos);
- int terminal = Dictionary::getTerminal(DICT_ROOT, &pos);
- int childPos = Dictionary::getAddress(DICT_ROOT, &pos);
- if (c == currentChar) {
- if (offset == length - 1) {
- if (terminal) {
- return (pos+1);
- }
- } else {
- if (childPos != 0) {
- int t = getBigramPosition(childPos, word, offset + 1, length);
- if (t > 0) {
- return t;
- }
- }
- }
- }
- if (terminal) {
- Dictionary::getFreq(DICT_ROOT, IS_LATEST_DICT_VERSION, &pos);
- }
- // There could be two instances of each alphabet - upper and lower case. So continue
- // looking ...
- }
- return NOT_VALID_WORD;
-}
-
-// The following functions will be modified.
-inline bool UnigramDictionary::processCurrentNode(const int initialPos, const int initialDepth,
- const int maxDepth, const bool initialTraverseAllNodes, int matchWeight, int inputIndex,
- const int initialDiffs, const int skipPos, const int excessivePos, const int transposedPos,
- int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition,
- bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs,
- int *nextSiblingPosition, int *nextOutputIndex) {
- if (DEBUG_DICT) {
- int inputCount = 0;
- if (skipPos >= 0) ++inputCount;
- if (excessivePos >= 0) ++inputCount;
- if (transposedPos >= 0) ++inputCount;
- assert(inputCount <= 1);
- }
- unsigned short c;
- int childPosition;
- bool terminal;
- int freq;
- bool isSameAsUserTypedLength = false;
-
- const int pos = initialPos;
- const int depth = initialDepth;
- const int traverseAllNodes = initialTraverseAllNodes;
- const int diffs = initialDiffs;
-
- const uint8_t flags = 0; // No flags for now
-
- if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;
-
- *nextSiblingPosition = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, pos,
- &c, &childPosition, &terminal, &freq);
- *nextOutputIndex = depth + 1;
-
- const bool needsToTraverseChildrenNodes = childPosition != 0;
-
- // If we are only doing traverseAllNodes, no need to look at the typed characters.
- if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
- mWord[depth] = c;
- if (traverseAllNodes && terminal) {
- onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
- excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize);
- }
- if (!needsToTraverseChildrenNodes) return false;
- *newTraverseAllNodes = traverseAllNodes;
- *newMatchRate = matchWeight;
- *newDiffs = diffs;
- *newInputIndex = inputIndex;
- } else {
- int inputIndexForProximity = inputIndex;
-
- if (transposedPos >= 0) {
- if (inputIndex == transposedPos) ++inputIndexForProximity;
- if (inputIndex == (transposedPos + 1)) --inputIndexForProximity;
- }
-
- ProximityInfo::ProximityType matchedProximityCharId = mProximityInfo->getMatchedProximityId(
- inputIndexForProximity, c, skipPos, excessivePos, transposedPos);
- if (ProximityInfo::UNRELATED_CHAR == matchedProximityCharId) return false;
- mWord[depth] = c;
- // If inputIndex is greater than mInputLength, that means there is no
- // proximity chars. So, we don't need to check proximity.
- if (ProximityInfo::SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
- multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight);
- }
- bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
- || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
- if (isSameAsUserTypedLength && terminal) {
- onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
- excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize);
- }
- if (!needsToTraverseChildrenNodes) return false;
- // Start traversing all nodes after the index exceeds the user typed length
- *newTraverseAllNodes = isSameAsUserTypedLength;
- *newMatchRate = matchWeight;
- *newDiffs = diffs
- + ((ProximityInfo::NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
- *newInputIndex = inputIndex + 1;
- }
- // Optimization: Prune out words that are too long compared to how much was typed.
- if (depth >= maxDepth || *newDiffs > mMaxEditDistance) {
- return false;
- }
-
- // If inputIndex is greater than mInputLength, that means there are no proximity chars.
- // TODO: Check if this can be isSameAsUserTypedLength only.
- if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) {
- *newTraverseAllNodes = true;
- }
- // get the count of nodes and increment childAddress.
- *newCount = Dictionary::getCount(DICT_ROOT, &childPosition);
- *newChildPosition = childPosition;
- if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
- return needsToTraverseChildrenNodes;
-}
-
-#else // NEW_DICTIONARY_FORMAT
-
// Wrapper for getMostFrequentWordLikeInner, which matches it to the previous
// interface.
inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex,
@@ -1055,83 +609,8 @@ int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWor
return maxFreq;
}
-// This function gets the frequency of the exact matching word in the dictionary.
-// If no match is found, it returns -1.
-int UnigramDictionary::getFrequency(const uint16_t* const inWord, const int length) const {
- int pos = 0;
- int wordPos = 0;
- const uint8_t* const root = DICT_ROOT;
-
- while (true) {
- // If we already traversed the tree further than the word is long, there means
- // there was no match (or we would have found it).
- if (wordPos > length) return -1;
- int charGroupCount = BinaryFormat::getGroupCountAndForwardPointer(root, &pos);
- const uint16_t wChar = inWord[wordPos];
- while (true) {
- // If there are no more character groups in this node, it means we could not
- // find a matching character for this depth, therefore there is no match.
- if (0 >= charGroupCount) return -1;
- const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
- int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
- if (character == wChar) {
- // This is the correct node. Only one character group may start with the same
- // char within a node, so either we found our match in this node, or there is
- // no match and we can return -1. So we will check all the characters in this
- // character group indeed does match.
- if (FLAG_HAS_MULTIPLE_CHARS & flags) {
- character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
- while (NOT_A_CHARACTER != character) {
- ++wordPos;
- // If we shoot the length of the word we search for, or if we find a single
- // character that does not match, as explained above, it means the word is
- // not in the dictionary (by virtue of this chargroup being the only one to
- // match the word on the first character, but not matching the whole word).
- if (wordPos > length) return -1;
- if (inWord[wordPos] != character) return -1;
- character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
- }
- }
- // If we come here we know that so far, we do match. Either we are on a terminal
- // and we match the length, in which case we found it, or we traverse children.
- // If we don't match the length AND don't have children, then a word in the
- // dictionary fully matches a prefix of the searched word but not the full word.
- ++wordPos;
- if (FLAG_IS_TERMINAL & flags) {
- if (wordPos == length) {
- return BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
- }
- pos = BinaryFormat::skipFrequency(FLAG_IS_TERMINAL, pos);
- }
- if (FLAG_GROUP_ADDRESS_TYPE_NOADDRESS == (MASK_GROUP_ADDRESS_TYPE & flags))
- return -1;
- // We have children and we are still shorter than the word we are searching for, so
- // we need to traverse children. Put the pointer on the children position, and
- // break
- pos = BinaryFormat::readChildrenPosition(root, flags, pos);
- break;
- } else {
- // This chargroup does not match, so skip the remaining part and go to the next.
- if (FLAG_HAS_MULTIPLE_CHARS & flags) {
- pos = BinaryFormat::skipOtherCharacters(root, pos);
- }
- pos = BinaryFormat::skipFrequency(flags, pos);
- pos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
- }
- --charGroupCount;
- }
- }
-}
-
bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const {
- return -1 != getFrequency(inWord, length);
-}
-
-int UnigramDictionary::getBigrams(unsigned short *word, int length, int *codes, int codesSize,
- unsigned short *outWords, int *frequencies, int maxWordLength, int maxBigrams,
- int maxAlternatives) {
- // TODO: add implementation.
- return 0;
+ return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length);
}
// TODO: remove this function.
@@ -1154,23 +633,13 @@ int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offs
// there aren't any more nodes at this level, it merely returns the address of the first byte after
// the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
// given level, as output into newCount when traversing this level's parent.
-inline bool UnigramDictionary::processCurrentNode(const int initialPos, const int initialDepth,
- const int maxDepth, const bool initialTraverseAllNodes, int matchWeight, int inputIndex,
- const int initialDiffs, const int skipPos, const int excessivePos, const int transposedPos,
- int *nextLetters, const int nextLettersSize, int *newCount, int *newChildrenPosition,
- bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs,
- int *nextSiblingPosition, int *newOutputIndex) {
+inline bool UnigramDictionary::processCurrentNode(const int initialPos,
+ Correction *correction, int *newCount,
+ int *newChildrenPosition, int *nextSiblingPosition) {
if (DEBUG_DICT) {
- int inputCount = 0;
- if (skipPos >= 0) ++inputCount;
- if (excessivePos >= 0) ++inputCount;
- if (transposedPos >= 0) ++inputCount;
- assert(inputCount <= 1);
+ correction->checkState();
}
int pos = initialPos;
- int depth = initialDepth;
- int traverseAllNodes = initialTraverseAllNodes;
- int diffs = initialDiffs;
// Flags contain the following information:
// - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
@@ -1182,6 +651,9 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
// - FLAG_HAS_BIGRAMS: whether this node has bigrams or not
const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos);
const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags));
+ const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags));
+
+ bool needsToInvokeOnTerminal = false;
// This gets only ONE character from the stream. Next there will be:
// if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node
@@ -1207,101 +679,21 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
const bool isLastChar = (NOT_A_CHARACTER == nextc);
// If there are more chars in this nodes, then this virtual node is not a terminal.
// If we are on the last char, this virtual node is a terminal if this node is.
- const bool isTerminal = isLastChar && (0 != (FLAG_IS_TERMINAL & flags));
- // If there are more chars in this node, then this virtual node has children.
- // If we are on the last char, this virtual node has children if this node has.
- const bool hasChildren = (!isLastChar) || BinaryFormat::hasChildrenInFlags(flags);
-
- // This has to be done for each virtual char (this forwards the "inputIndex" which
- // is the index in the user-inputted chars, as read by proximity chars.
- if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;
- if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
- mWord[depth] = c;
- if (traverseAllNodes && isTerminal) {
- // The frequency should be here, because we come here only if this is actually
- // a terminal node, and we are on its last char.
- const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
- onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
- excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize);
- }
- if (!hasChildren) {
- // If we don't have children here, that means we finished processing all
- // characters of this node (we are on the last virtual node), AND we are in
- // traverseAllNodes mode, which means we are searching for *completions*. We
- // should skip the frequency if we have a terminal, and report the position
- // of the next sibling. We don't have to return other values because we are
- // returning false, as in "don't traverse children".
- if (isTerminal) pos = BinaryFormat::skipFrequency(flags, pos);
- *nextSiblingPosition =
- BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
- return false;
- }
- } else {
- int inputIndexForProximity = inputIndex;
-
- if (transposedPos >= 0) {
- if (inputIndex == transposedPos) ++inputIndexForProximity;
- if (inputIndex == (transposedPos + 1)) --inputIndexForProximity;
- }
-
- int matchedProximityCharId = mProximityInfo->getMatchedProximityId(
- inputIndexForProximity, c, skipPos, excessivePos, transposedPos);
- if (ProximityInfo::UNRELATED_CHAR == matchedProximityCharId) {
- // We found that this is an unrelated character, so we should give up traversing
- // this node and its children entirely.
- // However we may not be on the last virtual node yet so we skip the remaining
- // characters in this node, the frequency if it's there, read the next sibling
- // position to output it, then return false.
- // We don't have to output other values because we return false, as in
- // "don't traverse children".
- if (!isLastChar) {
- pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
- }
- pos = BinaryFormat::skipFrequency(flags, pos);
- *nextSiblingPosition =
- BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
- return false;
- }
- mWord[depth] = c;
- // If inputIndex is greater than mInputLength, that means there is no
- // proximity chars. So, we don't need to check proximity.
- if (ProximityInfo::SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
- multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight);
- }
- const bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
- || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
- if (isSameAsUserTypedLength && isTerminal) {
- const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
- onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
- excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize);
- }
- // This character matched the typed character (enough to traverse the node at least)
- // so we just evaluated it. Now we should evaluate this virtual node's children - that
- // is, if it has any. If it has no children, we're done here - so we skip the end of
- // the node, output the siblings position, and return false "don't traverse children".
- // Note that !hasChildren implies isLastChar, so we know we don't have to skip any
- // remaining char in this group for there can't be any.
- if (!hasChildren) {
- pos = BinaryFormat::skipFrequency(flags, pos);
- *nextSiblingPosition =
- BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
- return false;
- }
- // Start traversing all nodes after the index exceeds the user typed length
- traverseAllNodes = isSameAsUserTypedLength;
- diffs = diffs
- + ((ProximityInfo::NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
- // Finally, we are ready to go to the next character, the next "virtual node".
- // We should advance the input index.
- // We do this in this branch of the 'if traverseAllNodes' because we are still matching
- // characters to input; the other branch is not matching them but searching for
- // completions, this is why it does not have to do it.
- ++inputIndex;
- }
- // Optimization: Prune out words that are too long compared to how much was typed.
- if (depth >= maxDepth || diffs > mMaxEditDistance) {
- // We are giving up parsing this node and its children. Skip the rest of the node,
- // output the sibling position, and return that we don't want to traverse children.
+ const bool isTerminal = isLastChar && isTerminalNode;
+
+ Correction::CorrectionType stateType = correction->processCharAndCalcState(
+ c, isTerminal);
+ if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL
+ || stateType == Correction::ON_TERMINAL) {
+ needsToInvokeOnTerminal = true;
+ } else if (stateType == Correction::UNRELATED) {
+ // We found that this is an unrelated character, so we should give up traversing
+ // this node and its children entirely.
+ // However we may not be on the last virtual node yet so we skip the remaining
+ // characters in this node, the frequency if it's there, read the next sibling
+ // position to output it, then return false.
+ // We don't have to output other values because we return false, as in
+ // "don't traverse children".
if (!isLastChar) {
pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
}
@@ -1315,23 +707,41 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
// will take care of prefetching the next. If we finally found our last char, nextc will
// contain NOT_A_CHARACTER.
c = nextc;
- // Also, the next char is one "virtual node" depth more than this char.
- ++depth;
} while (NOT_A_CHARACTER != c);
- // If inputIndex is greater than mInputLength, that means there are no proximity chars.
- // Here, that's all we are interested in so we don't need to check for isSameAsUserTypedLength.
- if (mInputLength <= *newInputIndex) {
- traverseAllNodes = true;
- }
+ if (isTerminalNode) {
+ if (needsToInvokeOnTerminal) {
+ // The frequency should be here, because we come here only if this is actually
+ // a terminal node, and we are on its last char.
+ const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
+ onTerminal(freq, mCorrection);
+ }
+
+ // If there are more chars in this node, then this virtual node has children.
+ // If we are on the last char, this virtual node has children if this node has.
+ const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags);
+
+ // This character matched the typed character (enough to traverse the node at least)
+ // so we just evaluated it. Now we should evaluate this virtual node's children - that
+ // is, if it has any. If it has no children, we're done here - so we skip the end of
+ // the node, output the siblings position, and return false "don't traverse children".
+ // Note that !hasChildren implies isLastChar, so we know we don't have to skip any
+ // remaining char in this group for there can't be any.
+ if (!hasChildren) {
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ *nextSiblingPosition =
+ BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
+ return false;
+ }
- // All the output values that are purely computation by this function are held in local
- // variables. Output them to the caller.
- *newTraverseAllNodes = traverseAllNodes;
- *newMatchRate = matchWeight;
- *newDiffs = diffs;
- *newInputIndex = inputIndex;
- *newOutputIndex = depth;
+ // Optimization: Prune out words that are too long compared to how much was typed.
+ if (correction->needsToPrune()) {
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ *nextSiblingPosition =
+ BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
+ return false;
+ }
+ }
// Now we finished processing this node, and we want to traverse children. If there are no
// children, we can't come here.
@@ -1351,6 +761,4 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
return true;
}
-#endif // NEW_DICTIONARY_FORMAT
-
} // namespace latinime