aboutsummaryrefslogtreecommitdiffstats
path: root/native/src/unigram_dictionary.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'native/src/unigram_dictionary.cpp')
-rw-r--r--native/src/unigram_dictionary.cpp481
1 files changed, 413 insertions, 68 deletions
diff --git a/native/src/unigram_dictionary.cpp b/native/src/unigram_dictionary.cpp
index 42951bf7a..698584e54 100644
--- a/native/src/unigram_dictionary.cpp
+++ b/native/src/unigram_dictionary.cpp
@@ -25,6 +25,10 @@
#include "dictionary.h"
#include "unigram_dictionary.h"
+#ifdef NEW_DICTIONARY_FORMAT
+#include "binary_format.h"
+#endif // NEW_DICTIONARY_FORMAT
+
namespace latinime {
const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
@@ -36,11 +40,20 @@ const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier,
int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars,
const bool isLatestDictVersion)
+#ifndef NEW_DICTIONARY_FORMAT
: DICT_ROOT(streamStart),
+#else // NEW_DICTIONARY_FORMAT
+ : DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE),
+#endif // NEW_DICTIONARY_FORMAT
MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion),
TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
+#ifndef NEW_DICTIONARY_FORMAT
ROOT_POS(isLatestDictVersion ? DICTIONARY_HEADER_SIZE : 0),
+#else // NEW_DICTIONARY_FORMAT
+ // TODO : remove this variable.
+ ROOT_POS(0),
+#endif // NEW_DICTIONARY_FORMAT
BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(*mInputCodes)),
MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) {
if (DEBUG_DICT) {
@@ -722,8 +735,6 @@ bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength,
}
#ifndef NEW_DICTIONARY_FORMAT
-// TODO: Don't forget to bring inline functions back to over where they are used.
-
// The following functions will be entirely replaced with new implementations.
void UnigramDictionary::getWordsOld(const int initialPos, const int inputLength, const int skipPos,
const int excessivePos, const int transposedPos,int *nextLetters,
@@ -999,10 +1010,241 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
#else // NEW_DICTIONARY_FORMAT
+// Wrapper for getMostFrequentWordLikeInner, which matches it to the previous
+// interface.
+inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex,
+ const int inputLength, unsigned short *word) {
+ uint16_t inWord[inputLength];
+
+ for (int i = 0; i < inputLength; ++i) {
+ inWord[i] = *getInputCharsAt(startInputIndex + i);
+ }
+ return getMostFrequentWordLikeInner(inWord, inputLength, word);
+}
+
+// This function will take the position of a character array within a CharGroup,
+// and check it actually like-matches the word in inWord starting at startInputIndex,
+// that is, it matches it with case and accents squashed.
+// The function returns true if there was a full match, false otherwise.
+// The function will copy on-the-fly the characters in the CharGroup to outNewWord.
+// It will also place the end position of the array in outPos; in outInputIndex,
+// it will place the index of the first char AFTER the match if there was a match,
+// and the initial position if there was not. It makes sense because if there was
+// a match we want to continue searching, but if there was not, we want to go to
+// the next CharGroup.
+// In and out parameters may point to the same location. This function takes care
+// not to use any input parameters after it wrote into its outputs.
+static inline bool testCharGroupForContinuedLikeness(const uint8_t flags,
+ const uint8_t* const root, const int startPos,
+ const uint16_t* const inWord, const int startInputIndex,
+ int32_t* outNewWord, int* outInputIndex, int* outPos) {
+ const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags));
+ int pos = startPos;
+ int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ int32_t baseChar = toBaseLowerCase(character);
+ const uint16_t wChar = toBaseLowerCase(inWord[startInputIndex]);
+
+ if (baseChar != wChar) {
+ *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos;
+ *outInputIndex = startInputIndex;
+ return false;
+ }
+ int inputIndex = startInputIndex;
+ outNewWord[inputIndex] = character;
+ if (hasMultipleChars) {
+ character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ while (NOT_A_CHARACTER != character) {
+ baseChar = toBaseLowerCase(character);
+ if (toBaseLowerCase(inWord[++inputIndex]) != baseChar) {
+ *outPos = BinaryFormat::skipOtherCharacters(root, pos);
+ *outInputIndex = startInputIndex;
+ return false;
+ }
+ outNewWord[inputIndex] = character;
+ character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ }
+ }
+ *outInputIndex = inputIndex + 1;
+ *outPos = pos;
+ return true;
+}
+
+// This function is invoked when a word like the word searched for is found.
+// It will compare the frequency to the max frequency, and if greater, will
+// copy the word into the output buffer. In output value maxFreq, it will
+// write the new maximum frequency if it changed.
+static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length,
+ short unsigned int* outWord, int* maxFreq) {
+ if (freq > *maxFreq) {
+ for (int q = 0; q < length; ++q)
+ outWord[q] = newWord[q];
+ outWord[length] = 0;
+ *maxFreq = freq;
+ }
+}
+
+// Will find the highest frequency of the words like the one passed as an argument,
+// that is, everything that only differs by case/accents.
+int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord,
+ const int length, short unsigned int* outWord) {
+ int32_t newWord[MAX_WORD_LENGTH_INTERNAL];
+ int depth = 0;
+ int maxFreq = -1;
+ const uint8_t* const root = DICT_ROOT;
+
+ mStackChildCount[0] = root[0];
+ mStackInputIndex[0] = 0;
+ mStackSiblingPos[0] = 1;
+ while (depth >= 0) {
+ const int charGroupCount = mStackChildCount[depth];
+ int pos = mStackSiblingPos[depth];
+ for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) {
+ int inputIndex = mStackInputIndex[depth];
+ const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
+ // Test whether all chars in this group match with the word we are searching for. If so,
+ // we want to traverse its children (or if the length match, evaluate its frequency).
+ // Note that this function will output the position regardless, but will only write
+ // into inputIndex if there is a match.
+ const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord,
+ inputIndex, newWord, &inputIndex, &pos);
+ if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) {
+ const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
+ onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq);
+ }
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
+ const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos);
+ // If we had a match and the word has children, we want to traverse them. We don't have
+ // to traverse words longer than the one we are searching for, since they will not match
+ // anyway, so don't traverse unless inputIndex < length.
+ if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) {
+ // Save position for this depth, to get back to this once children are done
+ mStackChildCount[depth] = charGroupIndex;
+ mStackSiblingPos[depth] = siblingPos;
+ // Prepare stack values for next depth
+ ++depth;
+ int childrenPos = childrenNodePos;
+ mStackChildCount[depth] =
+ BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos);
+ mStackSiblingPos[depth] = childrenPos;
+ mStackInputIndex[depth] = inputIndex;
+ pos = childrenPos;
+ // Go to the next depth level.
+ ++depth;
+ break;
+ } else {
+ // No match, or no children, or word too long to ever match: go the next sibling.
+ pos = siblingPos;
+ }
+ }
+ --depth;
+ }
+ return maxFreq;
+}
+
+// This function gets the frequency of the exact matching word in the dictionary.
+// If no match is found, it returns -1.
+int UnigramDictionary::getFrequency(const uint16_t* const inWord, const int length) const {
+ int pos = 0;
+ int wordPos = 0;
+ const uint8_t* const root = DICT_ROOT;
+
+ while (true) {
+ // If we already traversed the tree further than the word is long, there means
+ // there was no match (or we would have found it).
+ if (wordPos > length) return -1;
+ int charGroupCount = BinaryFormat::getGroupCountAndForwardPointer(root, &pos);
+ const uint16_t wChar = inWord[wordPos];
+ while (true) {
+ // If there are no more character groups in this node, it means we could not
+ // find a matching character for this depth, therefore there is no match.
+ if (0 >= charGroupCount) return -1;
+ const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
+ int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ if (character == wChar) {
+ // This is the correct node. Only one character group may start with the same
+ // char within a node, so either we found our match in this node, or there is
+ // no match and we can return -1. So we will check all the characters in this
+ // character group indeed does match.
+ if (FLAG_HAS_MULTIPLE_CHARS & flags) {
+ character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ while (NOT_A_CHARACTER != character) {
+ ++wordPos;
+ // If we shoot the length of the word we search for, or if we find a single
+ // character that does not match, as explained above, it means the word is
+ // not in the dictionary (by virtue of this chargroup being the only one to
+ // match the word on the first character, but not matching the whole word).
+ if (wordPos > length) return -1;
+ if (inWord[wordPos] != character) return -1;
+ character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
+ }
+ }
+ // If we come here we know that so far, we do match. Either we are on a terminal
+ // and we match the length, in which case we found it, or we traverse children.
+ // If we don't match the length AND don't have children, then a word in the
+ // dictionary fully matches a prefix of the searched word but not the full word.
+ ++wordPos;
+ if (FLAG_IS_TERMINAL & flags) {
+ if (wordPos == length) {
+ return BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
+ }
+ pos = BinaryFormat::skipFrequency(FLAG_IS_TERMINAL, pos);
+ }
+ if (FLAG_GROUP_ADDRESS_TYPE_NOADDRESS == (MASK_GROUP_ADDRESS_TYPE & flags))
+ return -1;
+ // We have children and we are still shorter than the word we are searching for, so
+ // we need to traverse children. Put the pointer on the children position, and
+ // break
+ pos = BinaryFormat::readChildrenPosition(root, flags, pos);
+ break;
+ } else {
+ // This chargroup does not match, so skip the remaining part and go to the next.
+ if (FLAG_HAS_MULTIPLE_CHARS & flags) {
+ pos = BinaryFormat::skipOtherCharacters(root, pos);
+ }
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ pos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
+ }
+ --charGroupCount;
+ }
+ }
+}
+
+bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const {
+ return -1 != getFrequency(inWord, length);
+}
+
+int UnigramDictionary::getBigrams(unsigned short *word, int length, int *codes, int codesSize,
+ unsigned short *outWords, int *frequencies, int maxWordLength, int maxBigrams,
+ int maxAlternatives) {
+ // TODO: add implementation.
+ return 0;
+}
+
+// TODO: remove this function.
+int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset,
+ int length) const {
+ return -1;
+}
+
+// ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not.
+// If the return value is false, then the caller should read in the output "nextSiblingPosition"
+// to find out the address of the next sibling node and pass it to a new call of processCurrentNode.
+// It is worthy to note that when false is returned, the output values other than
+// nextSiblingPosition are undefined.
+// If the return value is true, then the caller must proceed to traverse the children of this
+// node. processCurrentNode will output the information about the children: their count in
+// newCount, their position in newChildrenPosition, the traverseAllNodes flag in
+// newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the
+// diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into
+// newOutputIndex. Please also note the following caveat: processCurrentNode does not know when
+// there aren't any more nodes at this level, it merely returns the address of the first byte after
+// the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
+// given level, as output into newCount when traversing this level's parent.
inline bool UnigramDictionary::processCurrentNode(const int initialPos, const int initialDepth,
const int maxDepth, const bool initialTraverseAllNodes, int matchWeight, int inputIndex,
const int initialDiffs, const int skipPos, const int excessivePos, const int transposedPos,
- int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition,
+ int *nextLetters, const int nextLettersSize, int *newCount, int *newChildrenPosition,
bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs,
int *nextSiblingPosition, int *newOutputIndex) {
if (DEBUG_DICT) {
@@ -1012,84 +1254,187 @@ inline bool UnigramDictionary::processCurrentNode(const int initialPos, const in
if (transposedPos >= 0) ++inputCount;
assert(inputCount <= 1);
}
- unsigned short c;
- int childPosition;
- bool terminal;
- int freq;
- bool isSameAsUserTypedLength = false;
-
int pos = initialPos;
int depth = initialDepth;
int traverseAllNodes = initialTraverseAllNodes;
int diffs = initialDiffs;
- const uint8_t flags = 0; // No flags for now
-
- if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;
-
- *nextSiblingPosition = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, pos,
- &c, &childPosition, &terminal, &freq);
- *newOutputIndex = depth + 1;
+ // Flags contain the following information:
+ // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
+ // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address
+ // is on the specified number of bytes.
+ // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address.
+ // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not.
+ // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children)
+ // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not
+ const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos);
+ const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags));
+
+ // This gets only ONE character from the stream. Next there will be:
+ // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node
+ // else if FLAG_IS_TERMINAL: the frequency
+ // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address
+ // Note that you can't have a node that both is not a terminal and has no children.
+ int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos);
+ assert(NOT_A_CHARACTER != c);
+
+ // We are going to loop through each character and make it look like it's a different
+ // node each time. To do that, we will process characters in this node in order until
+ // we find the character terminator. This is signalled by getCharCode* returning
+ // NOT_A_CHARACTER.
+ // As a special case, if there is only one character in this node, we must not read the
+ // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags.
+ // This way, each loop run will look like a "virtual node".
+ do {
+ // We prefetch the next char. If 'c' is the last char of this node, we will have
+ // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node
+ // should behave as a terminal or not and whether we have children.
+ const int32_t nextc = hasMultipleChars
+ ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER;
+ const bool isLastChar = (NOT_A_CHARACTER == nextc);
+ // If there are more chars in this nodes, then this virtual node is not a terminal.
+ // If we are on the last char, this virtual node is a terminal if this node is.
+ const bool isTerminal = isLastChar && (0 != (FLAG_IS_TERMINAL & flags));
+ // If there are more chars in this node, then this virtual node has children.
+ // If we are on the last char, this virtual node has children if this node has.
+ const bool hasChildren = (!isLastChar) || BinaryFormat::hasChildrenInFlags(flags);
+
+ // This has to be done for each virtual char (this forwards the "inputIndex" which
+ // is the index in the user-inputted chars, as read by getInputCharsAt.
+ if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;
+ if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
+ mWord[depth] = c;
+ if (traverseAllNodes && isTerminal) {
+ // The frequency should be here, because we come here only if this is actually
+ // a terminal node, and we are on its last char.
+ const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
+ onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
+ excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize);
+ }
+ if (!hasChildren) {
+ // If we don't have children here, that means we finished processing all
+ // characters of this node (we are on the last virtual node), AND we are in
+ // traverseAllNodes mode, which means we are searching for *completions*. We
+ // should skip the frequency if we have a terminal, and report the position
+ // of the next sibling. We don't have to return other values because we are
+ // returning false, as in "don't traverse children".
+ if (isTerminal) pos = BinaryFormat::skipFrequency(flags, pos);
+ *nextSiblingPosition =
+ BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
+ return false;
+ }
+ } else {
+ const int *currentChars = getInputCharsAt(inputIndex);
- const bool needsToTraverseChildrenNodes = childPosition != 0;
+ if (transposedPos >= 0) {
+ if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS;
+ if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS;
+ }
- // If we are only doing traverseAllNodes, no need to look at the typed characters.
- if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
- mWord[depth] = c;
- if (traverseAllNodes && terminal) {
- onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
- excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize);
+ const int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos,
+ excessivePos, transposedPos);
+ if (UNRELATED_CHAR == matchedProximityCharId) {
+ // We found that this is an unrelated character, so we should give up traversing
+ // this node and its children entirely.
+ // However we may not be on the last virtual node yet so we skip the remaining
+ // characters in this node, the frequency if it's there, read the next sibling
+ // position to output it, then return false.
+ // We don't have to output other values because we return false, as in
+ // "don't traverse children".
+ if (!isLastChar) {
+ pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
+ }
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ *nextSiblingPosition =
+ BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
+ return false;
+ }
+ mWord[depth] = c;
+ // If inputIndex is greater than mInputLength, that means there is no
+ // proximity chars. So, we don't need to check proximity.
+ if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
+ multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight);
+ }
+ const bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
+ || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
+ if (isSameAsUserTypedLength && isTerminal) {
+ const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
+ onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
+ excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize);
+ }
+ // This character matched the typed character (enough to traverse the node at least)
+ // so we just evaluated it. Now we should evaluate this virtual node's children - that
+ // is, if it has any. If it has no children, we're done here - so we skip the end of
+ // the node, output the siblings position, and return false "don't traverse children".
+ // Note that !hasChildren implies isLastChar, so we know we don't have to skip any
+ // remaining char in this group for there can't be any.
+ if (!hasChildren) {
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ *nextSiblingPosition =
+ BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
+ return false;
+ }
+ // Start traversing all nodes after the index exceeds the user typed length
+ traverseAllNodes = isSameAsUserTypedLength;
+ diffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
+ // Finally, we are ready to go to the next character, the next "virtual node".
+ // We should advance the input index.
+ // We do this in this branch of the 'if traverseAllNodes' because we are still matching
+ // characters to input; the other branch is not matching them but searching for
+ // completions, this is why it does not have to do it.
+ ++inputIndex;
}
- if (!needsToTraverseChildrenNodes) return false;
- *newTraverseAllNodes = traverseAllNodes;
- *newMatchRate = matchWeight;
- *newDiffs = diffs;
- *newInputIndex = inputIndex;
- } else {
- const int *currentChars = getInputCharsAt(inputIndex);
-
- if (transposedPos >= 0) {
- if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS;
- if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS;
+ // Optimization: Prune out words that are too long compared to how much was typed.
+ if (depth >= maxDepth || diffs > mMaxEditDistance) {
+ // We are giving up parsing this node and its children. Skip the rest of the node,
+ // output the sibling position, and return that we don't want to traverse children.
+ if (!isLastChar) {
+ pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
+ }
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ *nextSiblingPosition =
+ BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
+ return false;
}
- int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos,
- transposedPos);
- if (UNRELATED_CHAR == matchedProximityCharId) return false;
- mWord[depth] = c;
- // If inputIndex is greater than mInputLength, that means there is no
- // proximity chars. So, we don't need to check proximity.
- if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
- multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight);
- }
- bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
- || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
- if (isSameAsUserTypedLength && terminal) {
- onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
- excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize);
- }
- if (!needsToTraverseChildrenNodes) return false;
- // Start traversing all nodes after the index exceeds the user typed length
- *newTraverseAllNodes = isSameAsUserTypedLength;
- *newMatchRate = matchWeight;
- *newDiffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
- *newInputIndex = inputIndex + 1;
- }
- // Optimization: Prune out words that are too long compared to how much was typed.
- if (depth >= maxDepth || *newDiffs > mMaxEditDistance) {
- return false;
- }
+ // Prepare for the next character. Promote the prefetched char to current char - the loop
+ // will take care of prefetching the next. If we finally found our last char, nextc will
+ // contain NOT_A_CHARACTER.
+ c = nextc;
+ // Also, the next char is one "virtual node" depth more than this char.
+ ++depth;
+ } while (NOT_A_CHARACTER != c);
// If inputIndex is greater than mInputLength, that means there are no proximity chars.
- // TODO: Check if this can be isSameAsUserTypedLength only.
- if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) {
- *newTraverseAllNodes = true;
+ // Here, that's all we are interested in so we don't need to check for isSameAsUserTypedLength.
+ if (mInputLength <= *newInputIndex) {
+ traverseAllNodes = true;
}
- // get the count of nodes and increment childAddress.
- *newCount = Dictionary::getCount(DICT_ROOT, &childPosition);
- *newChildPosition = childPosition;
- if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
- return needsToTraverseChildrenNodes;
+
+ // All the output values that are purely computation by this function are held in local
+ // variables. Output them to the caller.
+ *newTraverseAllNodes = traverseAllNodes;
+ *newMatchRate = matchWeight;
+ *newDiffs = diffs;
+ *newInputIndex = inputIndex;
+ *newOutputIndex = depth;
+
+ // Now we finished processing this node, and we want to traverse children. If there are no
+ // children, we can't come here.
+ assert(BinaryFormat::hasChildrenInFlags(flags));
+
+ // If this node was a terminal it still has the frequency under the pointer (it may have been
+ // read, but not skipped - see readFrequencyWithoutMovingPointer).
+ // Next come the children position, then possibly attributes (attributes are bigrams only for
+ // now, maybe something related to shortcuts in the future).
+ // Once this is read, we still need to output the number of nodes in the immediate children of
+ // this node, so we read and output it before returning true, as in "please traverse children".
+ pos = BinaryFormat::skipFrequency(flags, pos);
+ int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos);
+ *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
+ *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos);
+ *newChildrenPosition = childrenPos;
+ return true;
}
#endif // NEW_DICTIONARY_FORMAT