aboutsummaryrefslogtreecommitdiffstats
path: root/native/src/unigram_dictionary.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'native/src/unigram_dictionary.cpp')
-rw-r--r--native/src/unigram_dictionary.cpp1127
1 files changed, 1127 insertions, 0 deletions
diff --git a/native/src/unigram_dictionary.cpp b/native/src/unigram_dictionary.cpp
new file mode 100644
index 000000000..e3296f12a
--- /dev/null
+++ b/native/src/unigram_dictionary.cpp
@@ -0,0 +1,1127 @@
+/*
+**
+** Copyright 2010, The Android Open Source Project
+**
+** Licensed under the Apache License, Version 2.0 (the "License");
+** you may not use this file except in compliance with the License.
+** You may obtain a copy of the License at
+**
+** http://www.apache.org/licenses/LICENSE-2.0
+**
+** Unless required by applicable law or agreed to in writing, software
+** distributed under the License is distributed on an "AS IS" BASIS,
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+** See the License for the specific language governing permissions and
+** limitations under the License.
+*/
+
+#include <assert.h>
+#include <string.h>
+
+#define LOG_TAG "LatinIME: unigram_dictionary.cpp"
+
+#include "basechars.h"
+#include "char_utils.h"
+#include "dictionary.h"
+#include "unigram_dictionary.h"
+
+namespace latinime {
+
+const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
+ { { 'a', 'e' },
+ { 'o', 'e' },
+ { 'u', 'e' } };
+
+// TODO: check the header
+UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier,
+ int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars,
+ const bool isLatestDictVersion)
+ : DICT_ROOT(streamStart),
+ MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
+ MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion),
+ TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
+ ROOT_POS(isLatestDictVersion ? DICTIONARY_HEADER_SIZE : 0),
+ BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(*mInputCodes)),
+ MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) {
+ if (DEBUG_DICT) {
+ LOGI("UnigramDictionary - constructor");
+ }
+}
+
+UnigramDictionary::~UnigramDictionary() {}
+
+static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize,
+ const int MAX_PROXIMITY_CHARS) {
+ return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize;
+}
+
+bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const {
+
+ // There can't be a digraph if we don't have at least 2 characters to examine
+ if (i + 2 > codesSize) return false;
+
+ // Search for the first char of some digraph
+ int lastDigraphIndex = -1;
+ const int thisChar = codes[i * MAX_PROXIMITY_CHARS];
+ for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1;
+ lastDigraphIndex >= 0; --lastDigraphIndex) {
+ if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break;
+ }
+ // No match: return early
+ if (lastDigraphIndex < 0) return false;
+
+ // It's an interesting digraph if the second char matches too.
+ return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS];
+}
+
+// Mostly the same arguments as the non-recursive version, except:
+// codes is the original value. It points to the start of the work buffer, and gets passed as is.
+// codesSize is the size of the user input (thus, it is the size of codesSrc).
+// codesDest is the current point in the work buffer.
+// codesSrc is the current point in the user-input, original, content-unmodified buffer.
+// codesRemain is the remaining size in codesSrc.
+void UnigramDictionary::getWordWithDigraphSuggestionsRec(const ProximityInfo *proximityInfo,
+ const int *xcoordinates, const int* ycoordinates, const int *codesBuffer,
+ const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain,
+ const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) {
+
+ if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) {
+ for (int i = 0; i < codesRemain; ++i) {
+ if (isDigraph(codesSrc, i, codesRemain)) {
+ // Found a digraph. We will try both spellings. eg. the word is "pruefen"
+
+ // Copy the word up to the first char of the digraph, then continue processing
+ // on the remaining part of the word, skipping the second char of the digraph.
+ // In our example, copy "pru" and continue running on "fen"
+ // Make i the index of the second char of the digraph for simplicity. Forgetting
+ // to do that results in an infinite recursion so take care!
+ ++i;
+ memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR);
+ getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
+ codesBuffer, codesBufferSize, flags,
+ codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1,
+ currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords,
+ frequencies);
+
+ // Copy the second char of the digraph in place, then continue processing on
+ // the remaining part of the word.
+ // In our example, after "pru" in the buffer copy the "e", and continue on "fen"
+ memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS,
+ BYTES_IN_ONE_CHAR);
+ getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
+ codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS,
+ codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS,
+ outWords, frequencies);
+ return;
+ }
+ }
+ }
+
+ // If we come here, we hit the end of the word: let's check it against the dictionary.
+ // In our example, we'll come here once for "prufen" and then once for "pruefen".
+ // If the word contains several digraphs, we'll come it for the product of them.
+ // eg. if the word is "ueberpruefen" we'll test, in order, against
+ // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen".
+ const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain;
+ if (0 != remainingBytes)
+ memcpy(codesDest, codesSrc, remainingBytes);
+
+ getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
+ (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies);
+}
+
+int UnigramDictionary::getSuggestions(const ProximityInfo *proximityInfo, const int *xcoordinates,
+ const int *ycoordinates, const int *codes, const int codesSize, const int flags,
+ unsigned short *outWords, int *frequencies) {
+
+ if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags)
+ { // Incrementally tune the word and try all possibilities
+ int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)];
+ getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
+ codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies);
+ } else { // Normal processing
+ getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize,
+ outWords, frequencies);
+ }
+
+ PROF_START(20);
+ // Get the word count
+ int suggestedWordsCount = 0;
+ while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) {
+ suggestedWordsCount++;
+ }
+
+ if (DEBUG_DICT) {
+ LOGI("Returning %d words", suggestedWordsCount);
+ LOGI("Next letters: ");
+ for (int k = 0; k < NEXT_LETTERS_SIZE; k++) {
+ if (mNextLettersFrequency[k] > 0) {
+ LOGI("%c = %d,", k, mNextLettersFrequency[k]);
+ }
+ }
+ }
+ PROF_END(20);
+ PROF_CLOSE;
+ return suggestedWordsCount;
+}
+
+void UnigramDictionary::getWordSuggestions(const ProximityInfo *proximityInfo,
+ const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize,
+ unsigned short *outWords, int *frequencies) {
+
+ PROF_OPEN;
+ PROF_START(0);
+ initSuggestions(codes, codesSize, outWords, frequencies);
+ if (DEBUG_DICT) assert(codesSize == mInputLength);
+
+ const int MAX_DEPTH = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
+ PROF_END(0);
+
+ PROF_START(1);
+ getSuggestionCandidates(-1, -1, -1, mNextLettersFrequency, NEXT_LETTERS_SIZE, MAX_DEPTH);
+ PROF_END(1);
+
+ PROF_START(2);
+ // Suggestion with missing character
+ if (SUGGEST_WORDS_WITH_MISSING_CHARACTER) {
+ for (int i = 0; i < codesSize; ++i) {
+ if (DEBUG_DICT) {
+ LOGI("--- Suggest missing characters %d", i);
+ }
+ getSuggestionCandidates(i, -1, -1, NULL, 0, MAX_DEPTH);
+ }
+ }
+ PROF_END(2);
+
+ PROF_START(3);
+ // Suggestion with excessive character
+ if (SUGGEST_WORDS_WITH_EXCESSIVE_CHARACTER
+ && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_EXCESSIVE_CHARACTER_SUGGESTION) {
+ for (int i = 0; i < codesSize; ++i) {
+ if (DEBUG_DICT) {
+ LOGI("--- Suggest excessive characters %d", i);
+ }
+ getSuggestionCandidates(-1, i, -1, NULL, 0, MAX_DEPTH);
+ }
+ }
+ PROF_END(3);
+
+ PROF_START(4);
+ // Suggestion with transposed characters
+ // Only suggest words that length is mInputLength
+ if (SUGGEST_WORDS_WITH_TRANSPOSED_CHARACTERS) {
+ for (int i = 0; i < codesSize; ++i) {
+ if (DEBUG_DICT) {
+ LOGI("--- Suggest transposed characters %d", i);
+ }
+ getSuggestionCandidates(-1, -1, i, NULL, 0, mInputLength - 1);
+ }
+ }
+ PROF_END(4);
+
+ PROF_START(5);
+ // Suggestions with missing space
+ if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER
+ && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) {
+ for (int i = 1; i < codesSize; ++i) {
+ if (DEBUG_DICT) {
+ LOGI("--- Suggest missing space characters %d", i);
+ }
+ getMissingSpaceWords(mInputLength, i);
+ }
+ }
+ PROF_END(5);
+
+ PROF_START(6);
+ if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) {
+ // The first and last "mistyped spaces" are taken care of by excessive character handling
+ for (int i = 1; i < codesSize - 1; ++i) {
+ if (DEBUG_DICT) {
+ LOGI("--- Suggest words with proximity space %d", i);
+ }
+ const int x = xcoordinates[i];
+ const int y = ycoordinates[i];
+ if (DEBUG_PROXIMITY_INFO) {
+ LOGI("Input[%d] x = %d, y = %d, has space proximity = %d",
+ i, x, y, proximityInfo->hasSpaceProximity(x, y));
+ }
+ if (proximityInfo->hasSpaceProximity(x, y)) {
+ getMistypedSpaceWords(mInputLength, i);
+ }
+ }
+ }
+ PROF_END(6);
+}
+
+void UnigramDictionary::initSuggestions(const int *codes, const int codesSize,
+ unsigned short *outWords, int *frequencies) {
+ if (DEBUG_DICT) {
+ LOGI("initSuggest");
+ }
+ mFrequencies = frequencies;
+ mOutputChars = outWords;
+ mInputCodes = codes;
+ mInputLength = codesSize;
+ mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2;
+}
+
+static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) {
+ if (c < nextLettersSize) {
+ nextLetters[c]++;
+ }
+}
+
+// TODO: We need to optimize addWord by using STL or something
+// TODO: This needs to take an const unsigned short* and not tinker with its contents
+bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) {
+ word[length] = 0;
+ if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) {
+ char s[length + 1];
+ for (int i = 0; i <= length; i++) s[i] = word[i];
+ LOGI("Found word = %s, freq = %d", s, frequency);
+ }
+ if (length > MAX_WORD_LENGTH) {
+ if (DEBUG_DICT) {
+ LOGI("Exceeded max word length.");
+ }
+ return false;
+ }
+
+ // Find the right insertion point
+ int insertAt = 0;
+ while (insertAt < MAX_WORDS) {
+ // TODO: How should we sort words with the same frequency?
+ if (frequency > mFrequencies[insertAt]) {
+ break;
+ }
+ insertAt++;
+ }
+ if (insertAt < MAX_WORDS) {
+ if (DEBUG_DICT) {
+ char s[length + 1];
+ for (int i = 0; i <= length; i++) s[i] = word[i];
+ LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX);
+ }
+ memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]),
+ (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]),
+ (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0]));
+ mFrequencies[insertAt] = frequency;
+ memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short),
+ (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short),
+ (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH);
+ unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH;
+ while (length--) {
+ *dest++ = *word++;
+ }
+ *dest = 0; // NULL terminate
+ if (DEBUG_DICT) {
+ LOGI("Added word at %d", insertAt);
+ }
+ return true;
+ }
+ return false;
+}
+
+inline void UnigramDictionary::addWordAlternatesSpellings(const uint8_t* const root, int pos,
+ int depth, int finalFreq) {
+ // TODO: actually add alternates when the format supports it.
+}
+
+static inline bool hasAlternateSpellings(uint8_t flags) {
+ // TODO: when the format supports it, return the actual value.
+ return false;
+}
+
+static inline unsigned short toBaseLowerCase(unsigned short c) {
+ if (c < sizeof(BASE_CHARS) / sizeof(BASE_CHARS[0])) {
+ c = BASE_CHARS[c];
+ }
+ if (c >='A' && c <= 'Z') {
+ c |= 32;
+ } else if (c > 127) {
+ c = latin_tolower(c);
+ }
+ return c;
+}
+
+bool UnigramDictionary::sameAsTyped(const unsigned short *word, int length) const {
+ if (length != mInputLength) {
+ return false;
+ }
+ const int *inputCodes = mInputCodes;
+ while (length--) {
+ if ((unsigned int) *inputCodes != (unsigned int) *word) {
+ return false;
+ }
+ inputCodes += MAX_PROXIMITY_CHARS;
+ word++;
+ }
+ return true;
+}
+
+static const char QUOTE = '\'';
+static const char SPACE = ' ';
+
+void UnigramDictionary::getSuggestionCandidates(const int skipPos,
+ const int excessivePos, const int transposedPos, int *nextLetters,
+ const int nextLettersSize, const int maxDepth) {
+ if (DEBUG_DICT) {
+ LOGI("getSuggestionCandidates %d", maxDepth);
+ assert(transposedPos + 1 < mInputLength);
+ assert(excessivePos < mInputLength);
+ assert(missingPos < mInputLength);
+ }
+ int rootPosition = ROOT_POS;
+ // Get the number of child of root, then increment the position
+ int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition);
+ int depth = 0;
+
+ mStackChildCount[0] = childCount;
+ mStackTraverseAll[0] = (mInputLength <= 0);
+ mStackNodeFreq[0] = 1;
+ mStackInputIndex[0] = 0;
+ mStackDiffs[0] = 0;
+ mStackSiblingPos[0] = rootPosition;
+ mStackOutputIndex[0] = 0;
+
+ // Depth first search
+ while (depth >= 0) {
+ if (mStackChildCount[depth] > 0) {
+ --mStackChildCount[depth];
+ bool traverseAllNodes = mStackTraverseAll[depth];
+ int matchWeight = mStackNodeFreq[depth];
+ int inputIndex = mStackInputIndex[depth];
+ int diffs = mStackDiffs[depth];
+ int siblingPos = mStackSiblingPos[depth];
+ int outputIndex = mStackOutputIndex[depth];
+ int firstChildPos;
+ // depth will never be greater than maxDepth because in that case,
+ // needsToTraverseChildrenNodes should be false
+ const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, outputIndex,
+ maxDepth, traverseAllNodes, matchWeight, inputIndex, diffs, skipPos,
+ excessivePos, transposedPos, nextLetters, nextLettersSize, &childCount,
+ &firstChildPos, &traverseAllNodes, &matchWeight, &inputIndex, &diffs,
+ &siblingPos, &outputIndex);
+ // Update next sibling pos
+ mStackSiblingPos[depth] = siblingPos;
+ if (needsToTraverseChildrenNodes) {
+ // Goes to child node
+ ++depth;
+ mStackChildCount[depth] = childCount;
+ mStackTraverseAll[depth] = traverseAllNodes;
+ mStackNodeFreq[depth] = matchWeight;
+ mStackInputIndex[depth] = inputIndex;
+ mStackDiffs[depth] = diffs;
+ mStackSiblingPos[depth] = firstChildPos;
+ mStackOutputIndex[depth] = outputIndex;
+ }
+ } else {
+ // Goes to parent sibling node
+ --depth;
+ }
+ }
+}
+
+static const int TWO_31ST_DIV_255 = S_INT_MAX / 255;
+static inline int capped255MultForFullMatchAccentsOrCapitalizationDifference(const int num) {
+ return (num < TWO_31ST_DIV_255 ? 255 * num : S_INT_MAX);
+}
+
+static const int TWO_31ST_DIV_2 = S_INT_MAX / 2;
+inline static void multiplyIntCapped(const int multiplier, int *base) {
+ const int temp = *base;
+ if (temp != S_INT_MAX) {
+ // Branch if multiplier == 2 for the optimization
+ if (multiplier == 2) {
+ *base = TWO_31ST_DIV_2 >= temp ? temp << 1 : S_INT_MAX;
+ } else {
+ const int tempRetval = temp * multiplier;
+ *base = tempRetval >= temp ? tempRetval : S_INT_MAX;
+ }
+ }
+}
+
+inline static int powerIntCapped(const int base, const int n) {
+ if (base == 2) {
+ return n < 31 ? 1 << n : S_INT_MAX;
+ } else {
+ int ret = base;
+ for (int i = 1; i < n; ++i) multiplyIntCapped(base, &ret);
+ return ret;
+ }
+}
+
+inline static void multiplyRate(const int rate, int *freq) {
+ if (*freq != S_INT_MAX) {
+ if (*freq > 1000000) {
+ *freq /= 100;
+ multiplyIntCapped(rate, freq);
+ } else {
+ multiplyIntCapped(rate, freq);
+ *freq /= 100;
+ }
+ }
+}
+
+inline static int calcFreqForSplitTwoWords(
+ const int typedLetterMultiplier, const int firstWordLength, const int secondWordLength,
+ const int firstFreq, const int secondFreq, const bool isSpaceProximity) {
+ if (firstWordLength == 0 || secondWordLength == 0) {
+ return 0;
+ }
+ const int firstDemotionRate = 100 - 100 / (firstWordLength + 1);
+ int tempFirstFreq = firstFreq;
+ multiplyRate(firstDemotionRate, &tempFirstFreq);
+
+ const int secondDemotionRate = 100 - 100 / (secondWordLength + 1);
+ int tempSecondFreq = secondFreq;
+ multiplyRate(secondDemotionRate, &tempSecondFreq);
+
+ const int totalLength = firstWordLength + secondWordLength;
+
+ // Promote pairFreq with multiplying by 2, because the word length is the same as the typed
+ // length.
+ int totalFreq = tempFirstFreq + tempSecondFreq;
+
+ // This is a workaround to try offsetting the not-enough-demotion which will be done in
+ // calcNormalizedScore in Utils.java.
+ // In calcNormalizedScore the score will be demoted by (1 - 1 / length)
+ // but we demoted only (1 - 1 / (length + 1)) so we will additionally adjust freq by
+ // (1 - 1 / length) / (1 - 1 / (length + 1)) = (1 - 1 / (length * length))
+ const int normalizedScoreNotEnoughDemotionAdjustment = 100 - 100 / (totalLength * totalLength);
+ multiplyRate(normalizedScoreNotEnoughDemotionAdjustment, &totalFreq);
+
+ // At this moment, totalFreq is calculated by the following formula:
+ // (firstFreq * (1 - 1 / (firstWordLength + 1)) + secondFreq * (1 - 1 / (secondWordLength + 1)))
+ // * (1 - 1 / totalLength) / (1 - 1 / (totalLength + 1))
+
+ multiplyIntCapped(powerIntCapped(typedLetterMultiplier, totalLength), &totalFreq);
+
+ // This is another workaround to offset the demotion which will be done in
+ // calcNormalizedScore in Utils.java.
+ // In calcNormalizedScore the score will be demoted by (1 - 1 / length) so we have to promote
+ // the same amount because we already have adjusted the synthetic freq of this "missing or
+ // mistyped space" suggestion candidate above in this method.
+ const int normalizedScoreDemotionRateOffset = (100 + 100 / totalLength);
+ multiplyRate(normalizedScoreDemotionRateOffset, &totalFreq);
+
+ if (isSpaceProximity) {
+ // A word pair with one space proximity correction
+ if (DEBUG_DICT) {
+ LOGI("Found a word pair with space proximity correction.");
+ }
+ multiplyIntCapped(typedLetterMultiplier, &totalFreq);
+ multiplyRate(WORDS_WITH_PROXIMITY_CHARACTER_DEMOTION_RATE, &totalFreq);
+ }
+
+ multiplyRate(WORDS_WITH_MISSING_SPACE_CHARACTER_DEMOTION_RATE, &totalFreq);
+ return totalFreq;
+}
+
+bool UnigramDictionary::getMissingSpaceWords(const int inputLength, const int missingSpacePos) {
+ return getSplitTwoWordsSuggestion(
+ inputLength, 0, missingSpacePos, missingSpacePos, inputLength - missingSpacePos, false);
+}
+
+bool UnigramDictionary::getMistypedSpaceWords(const int inputLength, const int spaceProximityPos) {
+ return getSplitTwoWordsSuggestion(
+ inputLength, 0, spaceProximityPos, spaceProximityPos + 1,
+ inputLength - spaceProximityPos - 1, true);
+}
+
+inline int UnigramDictionary::calculateFinalFreq(const int inputIndex, const int depth,
+ const int matchWeight, const int skipPos, const int excessivePos, const int transposedPos,
+ const int freq, const bool sameLength) const {
+ // TODO: Demote by edit distance
+ int finalFreq = freq * matchWeight;
+ if (skipPos >= 0) {
+ if (mInputLength >= 2) {
+ const int demotionRate = WORDS_WITH_MISSING_CHARACTER_DEMOTION_RATE
+ * (10 * mInputLength - WORDS_WITH_MISSING_CHARACTER_DEMOTION_START_POS_10X)
+ / (10 * mInputLength
+ - WORDS_WITH_MISSING_CHARACTER_DEMOTION_START_POS_10X + 10);
+ if (DEBUG_DICT_FULL) {
+ LOGI("Demotion rate for missing character is %d.", demotionRate);
+ }
+ multiplyRate(demotionRate, &finalFreq);
+ } else {
+ finalFreq = 0;
+ }
+ }
+ if (transposedPos >= 0) multiplyRate(
+ WORDS_WITH_TRANSPOSED_CHARACTERS_DEMOTION_RATE, &finalFreq);
+ if (excessivePos >= 0) {
+ multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_DEMOTION_RATE, &finalFreq);
+ if (!existsAdjacentProximityChars(inputIndex, mInputLength)) {
+ multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_OUT_OF_PROXIMITY_DEMOTION_RATE, &finalFreq);
+ }
+ }
+ int lengthFreq = TYPED_LETTER_MULTIPLIER;
+ multiplyIntCapped(powerIntCapped(TYPED_LETTER_MULTIPLIER, depth), &lengthFreq);
+ if (lengthFreq == matchWeight) {
+ // Full exact match
+ if (depth > 1) {
+ if (DEBUG_DICT) {
+ LOGI("Found full matched word.");
+ }
+ multiplyRate(FULL_MATCHED_WORDS_PROMOTION_RATE, &finalFreq);
+ }
+ if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0) {
+ finalFreq = capped255MultForFullMatchAccentsOrCapitalizationDifference(finalFreq);
+ }
+ } else if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0 && depth > 0) {
+ // A word with proximity corrections
+ if (DEBUG_DICT) {
+ LOGI("Found one proximity correction.");
+ }
+ multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &finalFreq);
+ multiplyRate(WORDS_WITH_PROXIMITY_CHARACTER_DEMOTION_RATE, &finalFreq);
+ }
+ if (DEBUG_DICT) {
+ LOGI("calc: %d, %d", depth, sameLength);
+ }
+ if (sameLength) multiplyIntCapped(FULL_WORD_MULTIPLIER, &finalFreq);
+ return finalFreq;
+}
+
+inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
+ const int inputIndex, const int skipPos, const int depth) {
+ const unsigned short userTypedChar = getInputCharsAt(inputIndex)[0];
+ // Skip the ' or other letter and continue deeper
+ return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth;
+}
+
+inline bool UnigramDictionary::existsAdjacentProximityChars(const int inputIndex,
+ const int inputLength) const {
+ if (inputIndex < 0 || inputIndex >= inputLength) return false;
+ const int currentChar = *getInputCharsAt(inputIndex);
+ const int leftIndex = inputIndex - 1;
+ if (leftIndex >= 0) {
+ const int *leftChars = getInputCharsAt(leftIndex);
+ int i = 0;
+ while (leftChars[i] > 0 && i < MAX_PROXIMITY_CHARS) {
+ if (leftChars[i++] == currentChar) return true;
+ }
+ }
+ const int rightIndex = inputIndex + 1;
+ if (rightIndex < inputLength) {
+ const int *rightChars = getInputCharsAt(rightIndex);
+ int i = 0;
+ while (rightChars[i] > 0 && i < MAX_PROXIMITY_CHARS) {
+ if (rightChars[i++] == currentChar) return true;
+ }
+ }
+ return false;
+}
+
+// In the following function, c is the current character of the dictionary word
+// currently examined.
+// currentChars is an array containing the keys close to the character the
+// user actually typed at the same position. We want to see if c is in it: if so,
+// then the word contains at that position a character close to what the user
+// typed.
+// What the user typed is actually the first character of the array.
+// Notice : accented characters do not have a proximity list, so they are alone
+// in their list. The non-accented version of the character should be considered
+// "close", but not the other keys close to the non-accented version.
+inline UnigramDictionary::ProximityType UnigramDictionary::getMatchedProximityId(
+ const int *currentChars, const unsigned short c, const int skipPos,
+ const int excessivePos, const int transposedPos) {
+ const unsigned short baseLowerC = toBaseLowerCase(c);
+
+ // The first char in the array is what user typed. If it matches right away,
+ // that means the user typed that same char for this pos.
+ if (currentChars[0] == baseLowerC || currentChars[0] == c)
+ return SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR;
+
+ // If one of those is true, we should not check for close characters at all.
+ if (skipPos >= 0 || excessivePos >= 0 || transposedPos >= 0)
+ return UNRELATED_CHAR;
+
+ // If the non-accented, lowercased version of that first character matches c,
+ // then we have a non-accented version of the accented character the user
+ // typed. Treat it as a close char.
+ if (toBaseLowerCase(currentChars[0]) == baseLowerC)
+ return NEAR_PROXIMITY_CHAR;
+
+ // Not an exact nor an accent-alike match: search the list of close keys
+ int j = 1;
+ while (currentChars[j] > 0 && j < MAX_PROXIMITY_CHARS) {
+ const bool matched = (currentChars[j] == baseLowerC || currentChars[j] == c);
+ if (matched) return NEAR_PROXIMITY_CHAR;
+ ++j;
+ }
+
+ // Was not included, signal this as an unrelated character.
+ return UNRELATED_CHAR;
+}
+
+inline void UnigramDictionary::onTerminal(unsigned short int* word, const int depth,
+ const uint8_t* const root, const uint8_t flags, int pos,
+ const int inputIndex, const int matchWeight, const int skipPos,
+ const int excessivePos, const int transposedPos, const int freq, const bool sameLength,
+ int* nextLetters, const int nextLettersSize) {
+
+ const bool isSameAsTyped = sameLength ? sameAsTyped(word, depth + 1) : false;
+ const bool hasAlternates = hasAlternateSpellings(flags);
+ if (isSameAsTyped && !hasAlternates) return;
+
+ if (depth >= MIN_SUGGEST_DEPTH) {
+ const int finalFreq = calculateFinalFreq(inputIndex, depth, matchWeight, skipPos,
+ excessivePos, transposedPos, freq, sameLength);
+ if (!isSameAsTyped)
+ addWord(word, depth + 1, finalFreq);
+ if (hasAlternates)
+ addWordAlternatesSpellings(DICT_ROOT, pos, flags, finalFreq);
+ }
+
+ if (sameLength && depth >= mInputLength && skipPos < 0) {
+ registerNextLetter(word[mInputLength], nextLetters, nextLettersSize);
+ }
+}
+
+#ifndef NEW_DICTIONARY_FORMAT
+// TODO: Don't forget to bring inline functions back to over where they are used.
+
+// The following functions will be entirely replaced with new implementations.
+void UnigramDictionary::getWordsOld(const int initialPos, const int inputLength, const int skipPos,
+ const int excessivePos, const int transposedPos,int *nextLetters,
+ const int nextLettersSize) {
+ int initialPosition = initialPos;
+ const int count = Dictionary::getCount(DICT_ROOT, &initialPosition);
+ getWordsRec(count, initialPosition, 0,
+ min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH),
+ mInputLength <= 0, 1, 0, 0, skipPos, excessivePos, transposedPos, nextLetters,
+ nextLettersSize);
+}
+
+void UnigramDictionary::getWordsRec(const int childrenCount, const int pos, const int depth,
+ const int maxDepth, const bool traverseAllNodes, const int matchWeight,
+ const int inputIndex, const int diffs, const int skipPos, const int excessivePos,
+ const int transposedPos, int *nextLetters, const int nextLettersSize) {
+ int siblingPos = pos;
+ for (int i = 0; i < childrenCount; ++i) {
+ int newCount;
+ int newChildPosition;
+ bool newTraverseAllNodes;
+ int newMatchRate;
+ int newInputIndex;
+ int newDiffs;
+ int newSiblingPos;
+ int newOutputIndex;
+ const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth, maxDepth,
+ traverseAllNodes, matchWeight, inputIndex, diffs,
+ skipPos, excessivePos, transposedPos,
+ nextLetters, nextLettersSize,
+ &newCount, &newChildPosition, &newTraverseAllNodes, &newMatchRate,
+ &newInputIndex, &newDiffs, &newSiblingPos, &newOutputIndex);
+ siblingPos = newSiblingPos;
+
+ if (needsToTraverseChildrenNodes) {
+ getWordsRec(newCount, newChildPosition, newOutputIndex, maxDepth, newTraverseAllNodes,
+ newMatchRate, newInputIndex, newDiffs, skipPos, excessivePos, transposedPos,
+ nextLetters, nextLettersSize);
+ }
+ }
+}
+
+inline int UnigramDictionary::getBestWordFreq(const int startInputIndex, const int inputLength,
+ unsigned short *word) {
+ int pos = ROOT_POS;
+ int count = Dictionary::getCount(DICT_ROOT, &pos);
+ int maxFreq = 0;
+ int depth = 0;
+ unsigned short newWord[MAX_WORD_LENGTH_INTERNAL];
+ bool terminal = false;
+
+ mStackChildCount[0] = count;
+ mStackSiblingPos[0] = pos;
+
+ while (depth >= 0) {
+ if (mStackChildCount[depth] > 0) {
+ --mStackChildCount[depth];
+ int firstChildPos;
+ int newFreq;
+ int siblingPos = mStackSiblingPos[depth];
+ const bool needsToTraverseChildrenNodes = processCurrentNodeForExactMatch(siblingPos,
+ startInputIndex, depth, newWord, &firstChildPos, &count, &terminal, &newFreq,
+ &siblingPos);
+ mStackSiblingPos[depth] = siblingPos;
+ if (depth == (inputLength - 1)) {
+ // Traverse sibling node
+ if (terminal) {
+ if (newFreq > maxFreq) {
+ for (int i = 0; i < inputLength; ++i) word[i] = newWord[i];
+ if (DEBUG_DICT && DEBUG_NODE) {
+ char s[inputLength + 1];
+ for (int i = 0; i < inputLength; ++i) s[i] = word[i];
+ s[inputLength] = 0;
+ LOGI("New missing space word found: %d > %d (%s), %d, %d",
+ newFreq, maxFreq, s, inputLength, depth);
+ }
+ maxFreq = newFreq;
+ }
+ }
+ } else if (needsToTraverseChildrenNodes) {
+ // Traverse children nodes
+ ++depth;
+ mStackChildCount[depth] = count;
+ mStackSiblingPos[depth] = firstChildPos;
+ }
+ } else {
+ // Traverse parent node
+ --depth;
+ }
+ }
+
+ word[inputLength] = 0;
+ return maxFreq;
+}
+
+inline bool UnigramDictionary::processCurrentNodeForExactMatch(const int firstChildPos,
+ const int startInputIndex, const int depth, unsigned short *word, int *newChildPosition,
+ int *newCount, bool *newTerminal, int *newFreq, int *siblingPos) {
+ const int inputIndex = startInputIndex + depth;
+ const int *currentChars = getInputCharsAt(inputIndex);
+ unsigned short c;
+ *siblingPos = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, firstChildPos,
+ &c, newChildPosition, newTerminal, newFreq);
+ const unsigned int inputC = currentChars[0];
+ if (DEBUG_DICT) {
+ assert(inputC <= U_SHORT_MAX);
+ }
+ const unsigned short baseLowerC = toBaseLowerCase(c);
+ const bool matched = (inputC == baseLowerC || inputC == c);
+ const bool hasChild = *newChildPosition != 0;
+ if (matched) {
+ word[depth] = c;
+ if (DEBUG_DICT && DEBUG_NODE) {
+ LOGI("Node(%c, %c)<%d>, %d, %d", inputC, c, matched, hasChild, *newFreq);
+ if (*newTerminal) {
+ LOGI("Terminal %d", *newFreq);
+ }
+ }
+ if (hasChild) {
+ *newCount = Dictionary::getCount(DICT_ROOT, newChildPosition);
+ return true;
+ } else {
+ return false;
+ }
+ } else {
+ // If this node is not user typed character, this method treats this word as unmatched.
+ // Thus newTerminal shouldn't be true.
+ *newTerminal = false;
+ return false;
+ }
+}
+
+// TODO: use uint32_t instead of unsigned short
+bool UnigramDictionary::isValidWord(unsigned short *word, int length) {
+ if (IS_LATEST_DICT_VERSION) {
+ return (getBigramPosition(DICTIONARY_HEADER_SIZE, word, 0, length) != NOT_VALID_WORD);
+ } else {
+ return (getBigramPosition(0, word, 0, length) != NOT_VALID_WORD);
+ }
+}
+
+
+// Require strict exact match.
+int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset,
+ int length) const {
+ // returns address of bigram data of that word
+ // return -99 if not found
+
+ int count = Dictionary::getCount(DICT_ROOT, &pos);
+ unsigned short currentChar = (unsigned short) word[offset];
+ for (int j = 0; j < count; j++) {
+ unsigned short c = Dictionary::getChar(DICT_ROOT, &pos);
+ int terminal = Dictionary::getTerminal(DICT_ROOT, &pos);
+ int childPos = Dictionary::getAddress(DICT_ROOT, &pos);
+ if (c == currentChar) {
+ if (offset == length - 1) {
+ if (terminal) {
+ return (pos+1);
+ }
+ } else {
+ if (childPos != 0) {
+ int t = getBigramPosition(childPos, word, offset + 1, length);
+ if (t > 0) {
+ return t;
+ }
+ }
+ }
+ }
+ if (terminal) {
+ Dictionary::getFreq(DICT_ROOT, IS_LATEST_DICT_VERSION, &pos);
+ }
+ // There could be two instances of each alphabet - upper and lower case. So continue
+ // looking ...
+ }
+ return NOT_VALID_WORD;
+}
+
+
+// The following functions will be modified.
+bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength,
+ const int firstWordStartPos, const int firstWordLength, const int secondWordStartPos,
+ const int secondWordLength, const bool isSpaceProximity) {
+ if (inputLength >= MAX_WORD_LENGTH) return false;
+ if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos
+ || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength)
+ return false;
+ const int newWordLength = firstWordLength + secondWordLength + 1;
+ // Allocating variable length array on stack
+ unsigned short word[newWordLength];
+ const int firstFreq = getBestWordFreq(firstWordStartPos, firstWordLength, mWord);
+ if (DEBUG_DICT) {
+ LOGI("First freq: %d", firstFreq);
+ }
+ if (firstFreq <= 0) return false;
+
+ for (int i = 0; i < firstWordLength; ++i) {
+ word[i] = mWord[i];
+ }
+
+ const int secondFreq = getBestWordFreq(secondWordStartPos, secondWordLength, mWord);
+ if (DEBUG_DICT) {
+ LOGI("Second freq: %d", secondFreq);
+ }
+ if (secondFreq <= 0) return false;
+
+ word[firstWordLength] = SPACE;
+ for (int i = (firstWordLength + 1); i < newWordLength; ++i) {
+ word[i] = mWord[i - firstWordLength - 1];
+ }
+
+ int pairFreq = calcFreqForSplitTwoWords(TYPED_LETTER_MULTIPLIER, firstWordLength,
+ secondWordLength, firstFreq, secondFreq, isSpaceProximity);
+ if (DEBUG_DICT) {
+ LOGI("Split two words: %d, %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength,
+ TYPED_LETTER_MULTIPLIER);
+ }
+ addWord(word, newWordLength, pairFreq);
+ return true;
+}
+
+inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth,
+ const int maxDepth, const bool traverseAllNodes, int matchWeight, int inputIndex,
+ const int diffs, const int skipPos, const int excessivePos, const int transposedPos,
+ int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition,
+ bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs,
+ int *nextSiblingPosition, int *nextOutputIndex) {
+ if (DEBUG_DICT) {
+ int inputCount = 0;
+ if (skipPos >= 0) ++inputCount;
+ if (excessivePos >= 0) ++inputCount;
+ if (transposedPos >= 0) ++inputCount;
+ assert(inputCount <= 1);
+ }
+ unsigned short c;
+ int childPosition;
+ bool terminal;
+ int freq;
+ bool isSameAsUserTypedLength = false;
+
+ const uint8_t flags = 0; // No flags for now
+
+ if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;
+
+ *nextSiblingPosition = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, pos,
+ &c, &childPosition, &terminal, &freq);
+ *nextOutputIndex = depth + 1;
+
+ const bool needsToTraverseChildrenNodes = childPosition != 0;
+
+ // If we are only doing traverseAllNodes, no need to look at the typed characters.
+ if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
+ mWord[depth] = c;
+ if (traverseAllNodes && terminal) {
+ onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
+ excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize);
+ }
+ if (!needsToTraverseChildrenNodes) return false;
+ *newTraverseAllNodes = traverseAllNodes;
+ *newMatchRate = matchWeight;
+ *newDiffs = diffs;
+ *newInputIndex = inputIndex;
+ } else {
+ const int *currentChars = getInputCharsAt(inputIndex);
+
+ if (transposedPos >= 0) {
+ if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS;
+ if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS;
+ }
+
+ int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos,
+ transposedPos);
+ if (UNRELATED_CHAR == matchedProximityCharId) return false;
+ mWord[depth] = c;
+ // If inputIndex is greater than mInputLength, that means there is no
+ // proximity chars. So, we don't need to check proximity.
+ if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
+ multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight);
+ }
+ bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
+ || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
+ if (isSameAsUserTypedLength && terminal) {
+ onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
+ excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize);
+ }
+ if (!needsToTraverseChildrenNodes) return false;
+ // Start traversing all nodes after the index exceeds the user typed length
+ *newTraverseAllNodes = isSameAsUserTypedLength;
+ *newMatchRate = matchWeight;
+ *newDiffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
+ *newInputIndex = inputIndex + 1;
+ }
+ // Optimization: Prune out words that are too long compared to how much was typed.
+ if (depth >= maxDepth || *newDiffs > mMaxEditDistance) {
+ return false;
+ }
+
+ // If inputIndex is greater than mInputLength, that means there are no proximity chars.
+ // TODO: Check if this can be isSameAsUserTypedLength only.
+ if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) {
+ *newTraverseAllNodes = true;
+ }
+ // get the count of nodes and increment childAddress.
+ *newCount = Dictionary::getCount(DICT_ROOT, &childPosition);
+ *newChildPosition = childPosition;
+ if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
+ return needsToTraverseChildrenNodes;
+}
+
+#else // NEW_DICTIONARY_FORMAT
+
+bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength,
+ const int firstWordStartPos, const int firstWordLength, const int secondWordStartPos,
+ const int secondWordLength, const bool isSpaceProximity) {
+ if (inputLength >= MAX_WORD_LENGTH) return false;
+ if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos
+ || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength)
+ return false;
+ const int newWordLength = firstWordLength + secondWordLength + 1;
+ // Allocating variable length array on stack
+ unsigned short word[newWordLength];
+ const int firstFreq = getBestWordFreq(firstWordStartPos, firstWordLength, mWord);
+ if (DEBUG_DICT) {
+ LOGI("First freq: %d", firstFreq);
+ }
+ if (firstFreq <= 0) return false;
+
+ for (int i = 0; i < firstWordLength; ++i) {
+ word[i] = mWord[i];
+ }
+
+ const int secondFreq = getBestWordFreq(secondWordStartPos, secondWordLength, mWord);
+ if (DEBUG_DICT) {
+ LOGI("Second freq: %d", secondFreq);
+ }
+ if (secondFreq <= 0) return false;
+
+ word[firstWordLength] = SPACE;
+ for (int i = (firstWordLength + 1); i < newWordLength; ++i) {
+ word[i] = mWord[i - firstWordLength - 1];
+ }
+
+ int pairFreq = calcFreqForSplitTwoWords(TYPED_LETTER_MULTIPLIER, firstWordLength,
+ secondWordLength, firstFreq, secondFreq, isSpaceProximity);
+ if (DEBUG_DICT) {
+ LOGI("Split two words: %d, %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength,
+ TYPED_LETTER_MULTIPLIER);
+ }
+ addWord(word, newWordLength, pairFreq);
+ return true;
+}
+
+inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth,
+ const int maxDepth, const bool traverseAllNodes, int matchWeight, int inputIndex,
+ const int diffs, const int skipPos, const int excessivePos, const int transposedPos,
+ int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition,
+ bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs,
+ int *nextSiblingPosition, int *nextOutputIndex) {
+ if (DEBUG_DICT) {
+ int inputCount = 0;
+ if (skipPos >= 0) ++inputCount;
+ if (excessivePos >= 0) ++inputCount;
+ if (transposedPos >= 0) ++inputCount;
+ assert(inputCount <= 1);
+ }
+ unsigned short c;
+ int childPosition;
+ bool terminal;
+ int freq;
+ bool isSameAsUserTypedLength = false;
+
+ const uint8_t flags = 0; // No flags for now
+
+ if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;
+
+ *nextSiblingPosition = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, pos,
+ &c, &childPosition, &terminal, &freq);
+ *nextOutputIndex = depth + 1;
+
+ const bool needsToTraverseChildrenNodes = childPosition != 0;
+
+ // If we are only doing traverseAllNodes, no need to look at the typed characters.
+ if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
+ mWord[depth] = c;
+ if (traverseAllNodes && terminal) {
+ onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
+ excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize);
+ }
+ if (!needsToTraverseChildrenNodes) return false;
+ *newTraverseAllNodes = traverseAllNodes;
+ *newMatchRate = matchWeight;
+ *newDiffs = diffs;
+ *newInputIndex = inputIndex;
+ } else {
+ const int *currentChars = getInputCharsAt(inputIndex);
+
+ if (transposedPos >= 0) {
+ if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS;
+ if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS;
+ }
+
+ int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos,
+ transposedPos);
+ if (UNRELATED_CHAR == matchedProximityCharId) return false;
+ mWord[depth] = c;
+ // If inputIndex is greater than mInputLength, that means there is no
+ // proximity chars. So, we don't need to check proximity.
+ if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
+ multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight);
+ }
+ bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
+ || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
+ if (isSameAsUserTypedLength && terminal) {
+ onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
+ excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize);
+ }
+ if (!needsToTraverseChildrenNodes) return false;
+ // Start traversing all nodes after the index exceeds the user typed length
+ *newTraverseAllNodes = isSameAsUserTypedLength;
+ *newMatchRate = matchWeight;
+ *newDiffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
+ *newInputIndex = inputIndex + 1;
+ }
+ // Optimization: Prune out words that are too long compared to how much was typed.
+ if (depth >= maxDepth || *newDiffs > mMaxEditDistance) {
+ return false;
+ }
+
+ // If inputIndex is greater than mInputLength, that means there are no proximity chars.
+ // TODO: Check if this can be isSameAsUserTypedLength only.
+ if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) {
+ *newTraverseAllNodes = true;
+ }
+ // get the count of nodes and increment childAddress.
+ *newCount = Dictionary::getCount(DICT_ROOT, &childPosition);
+ *newChildPosition = childPosition;
+ if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
+ return needsToTraverseChildrenNodes;
+}
+
+#endif // NEW_DICTIONARY_FORMAT
+
+} // namespace latinime