diff options
Diffstat (limited to 'native/src/unigram_dictionary.cpp')
-rw-r--r-- | native/src/unigram_dictionary.cpp | 1127 |
1 files changed, 0 insertions, 1127 deletions
diff --git a/native/src/unigram_dictionary.cpp b/native/src/unigram_dictionary.cpp deleted file mode 100644 index e3296f12a..000000000 --- a/native/src/unigram_dictionary.cpp +++ /dev/null @@ -1,1127 +0,0 @@ -/* -** -** Copyright 2010, The Android Open Source Project -** -** Licensed under the Apache License, Version 2.0 (the "License"); -** you may not use this file except in compliance with the License. -** You may obtain a copy of the License at -** -** http://www.apache.org/licenses/LICENSE-2.0 -** -** Unless required by applicable law or agreed to in writing, software -** distributed under the License is distributed on an "AS IS" BASIS, -** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -** See the License for the specific language governing permissions and -** limitations under the License. -*/ - -#include <assert.h> -#include <string.h> - -#define LOG_TAG "LatinIME: unigram_dictionary.cpp" - -#include "basechars.h" -#include "char_utils.h" -#include "dictionary.h" -#include "unigram_dictionary.h" - -namespace latinime { - -const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] = - { { 'a', 'e' }, - { 'o', 'e' }, - { 'u', 'e' } }; - -// TODO: check the header -UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier, - int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars, - const bool isLatestDictVersion) - : DICT_ROOT(streamStart), - MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords), - MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion), - TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier), - ROOT_POS(isLatestDictVersion ? DICTIONARY_HEADER_SIZE : 0), - BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(*mInputCodes)), - MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) { - if (DEBUG_DICT) { - LOGI("UnigramDictionary - constructor"); - } -} - -UnigramDictionary::~UnigramDictionary() {} - -static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize, - const int MAX_PROXIMITY_CHARS) { - return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize; -} - -bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const { - - // There can't be a digraph if we don't have at least 2 characters to examine - if (i + 2 > codesSize) return false; - - // Search for the first char of some digraph - int lastDigraphIndex = -1; - const int thisChar = codes[i * MAX_PROXIMITY_CHARS]; - for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1; - lastDigraphIndex >= 0; --lastDigraphIndex) { - if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break; - } - // No match: return early - if (lastDigraphIndex < 0) return false; - - // It's an interesting digraph if the second char matches too. - return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS]; -} - -// Mostly the same arguments as the non-recursive version, except: -// codes is the original value. It points to the start of the work buffer, and gets passed as is. -// codesSize is the size of the user input (thus, it is the size of codesSrc). -// codesDest is the current point in the work buffer. -// codesSrc is the current point in the user-input, original, content-unmodified buffer. -// codesRemain is the remaining size in codesSrc. -void UnigramDictionary::getWordWithDigraphSuggestionsRec(const ProximityInfo *proximityInfo, - const int *xcoordinates, const int* ycoordinates, const int *codesBuffer, - const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain, - const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) { - - if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) { - for (int i = 0; i < codesRemain; ++i) { - if (isDigraph(codesSrc, i, codesRemain)) { - // Found a digraph. We will try both spellings. eg. the word is "pruefen" - - // Copy the word up to the first char of the digraph, then continue processing - // on the remaining part of the word, skipping the second char of the digraph. - // In our example, copy "pru" and continue running on "fen" - // Make i the index of the second char of the digraph for simplicity. Forgetting - // to do that results in an infinite recursion so take care! - ++i; - memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR); - getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, - codesBuffer, codesBufferSize, flags, - codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1, - currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords, - frequencies); - - // Copy the second char of the digraph in place, then continue processing on - // the remaining part of the word. - // In our example, after "pru" in the buffer copy the "e", and continue on "fen" - memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS, - BYTES_IN_ONE_CHAR); - getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, - codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS, - codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, - outWords, frequencies); - return; - } - } - } - - // If we come here, we hit the end of the word: let's check it against the dictionary. - // In our example, we'll come here once for "prufen" and then once for "pruefen". - // If the word contains several digraphs, we'll come it for the product of them. - // eg. if the word is "ueberpruefen" we'll test, in order, against - // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen". - const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain; - if (0 != remainingBytes) - memcpy(codesDest, codesSrc, remainingBytes); - - getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer, - (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies); -} - -int UnigramDictionary::getSuggestions(const ProximityInfo *proximityInfo, const int *xcoordinates, - const int *ycoordinates, const int *codes, const int codesSize, const int flags, - unsigned short *outWords, int *frequencies) { - - if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags) - { // Incrementally tune the word and try all possibilities - int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)]; - getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, - codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies); - } else { // Normal processing - getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize, - outWords, frequencies); - } - - PROF_START(20); - // Get the word count - int suggestedWordsCount = 0; - while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) { - suggestedWordsCount++; - } - - if (DEBUG_DICT) { - LOGI("Returning %d words", suggestedWordsCount); - LOGI("Next letters: "); - for (int k = 0; k < NEXT_LETTERS_SIZE; k++) { - if (mNextLettersFrequency[k] > 0) { - LOGI("%c = %d,", k, mNextLettersFrequency[k]); - } - } - } - PROF_END(20); - PROF_CLOSE; - return suggestedWordsCount; -} - -void UnigramDictionary::getWordSuggestions(const ProximityInfo *proximityInfo, - const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize, - unsigned short *outWords, int *frequencies) { - - PROF_OPEN; - PROF_START(0); - initSuggestions(codes, codesSize, outWords, frequencies); - if (DEBUG_DICT) assert(codesSize == mInputLength); - - const int MAX_DEPTH = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH); - PROF_END(0); - - PROF_START(1); - getSuggestionCandidates(-1, -1, -1, mNextLettersFrequency, NEXT_LETTERS_SIZE, MAX_DEPTH); - PROF_END(1); - - PROF_START(2); - // Suggestion with missing character - if (SUGGEST_WORDS_WITH_MISSING_CHARACTER) { - for (int i = 0; i < codesSize; ++i) { - if (DEBUG_DICT) { - LOGI("--- Suggest missing characters %d", i); - } - getSuggestionCandidates(i, -1, -1, NULL, 0, MAX_DEPTH); - } - } - PROF_END(2); - - PROF_START(3); - // Suggestion with excessive character - if (SUGGEST_WORDS_WITH_EXCESSIVE_CHARACTER - && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_EXCESSIVE_CHARACTER_SUGGESTION) { - for (int i = 0; i < codesSize; ++i) { - if (DEBUG_DICT) { - LOGI("--- Suggest excessive characters %d", i); - } - getSuggestionCandidates(-1, i, -1, NULL, 0, MAX_DEPTH); - } - } - PROF_END(3); - - PROF_START(4); - // Suggestion with transposed characters - // Only suggest words that length is mInputLength - if (SUGGEST_WORDS_WITH_TRANSPOSED_CHARACTERS) { - for (int i = 0; i < codesSize; ++i) { - if (DEBUG_DICT) { - LOGI("--- Suggest transposed characters %d", i); - } - getSuggestionCandidates(-1, -1, i, NULL, 0, mInputLength - 1); - } - } - PROF_END(4); - - PROF_START(5); - // Suggestions with missing space - if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER - && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) { - for (int i = 1; i < codesSize; ++i) { - if (DEBUG_DICT) { - LOGI("--- Suggest missing space characters %d", i); - } - getMissingSpaceWords(mInputLength, i); - } - } - PROF_END(5); - - PROF_START(6); - if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) { - // The first and last "mistyped spaces" are taken care of by excessive character handling - for (int i = 1; i < codesSize - 1; ++i) { - if (DEBUG_DICT) { - LOGI("--- Suggest words with proximity space %d", i); - } - const int x = xcoordinates[i]; - const int y = ycoordinates[i]; - if (DEBUG_PROXIMITY_INFO) { - LOGI("Input[%d] x = %d, y = %d, has space proximity = %d", - i, x, y, proximityInfo->hasSpaceProximity(x, y)); - } - if (proximityInfo->hasSpaceProximity(x, y)) { - getMistypedSpaceWords(mInputLength, i); - } - } - } - PROF_END(6); -} - -void UnigramDictionary::initSuggestions(const int *codes, const int codesSize, - unsigned short *outWords, int *frequencies) { - if (DEBUG_DICT) { - LOGI("initSuggest"); - } - mFrequencies = frequencies; - mOutputChars = outWords; - mInputCodes = codes; - mInputLength = codesSize; - mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2; -} - -static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) { - if (c < nextLettersSize) { - nextLetters[c]++; - } -} - -// TODO: We need to optimize addWord by using STL or something -// TODO: This needs to take an const unsigned short* and not tinker with its contents -bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) { - word[length] = 0; - if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) { - char s[length + 1]; - for (int i = 0; i <= length; i++) s[i] = word[i]; - LOGI("Found word = %s, freq = %d", s, frequency); - } - if (length > MAX_WORD_LENGTH) { - if (DEBUG_DICT) { - LOGI("Exceeded max word length."); - } - return false; - } - - // Find the right insertion point - int insertAt = 0; - while (insertAt < MAX_WORDS) { - // TODO: How should we sort words with the same frequency? - if (frequency > mFrequencies[insertAt]) { - break; - } - insertAt++; - } - if (insertAt < MAX_WORDS) { - if (DEBUG_DICT) { - char s[length + 1]; - for (int i = 0; i <= length; i++) s[i] = word[i]; - LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX); - } - memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]), - (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]), - (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0])); - mFrequencies[insertAt] = frequency; - memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short), - (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short), - (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH); - unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH; - while (length--) { - *dest++ = *word++; - } - *dest = 0; // NULL terminate - if (DEBUG_DICT) { - LOGI("Added word at %d", insertAt); - } - return true; - } - return false; -} - -inline void UnigramDictionary::addWordAlternatesSpellings(const uint8_t* const root, int pos, - int depth, int finalFreq) { - // TODO: actually add alternates when the format supports it. -} - -static inline bool hasAlternateSpellings(uint8_t flags) { - // TODO: when the format supports it, return the actual value. - return false; -} - -static inline unsigned short toBaseLowerCase(unsigned short c) { - if (c < sizeof(BASE_CHARS) / sizeof(BASE_CHARS[0])) { - c = BASE_CHARS[c]; - } - if (c >='A' && c <= 'Z') { - c |= 32; - } else if (c > 127) { - c = latin_tolower(c); - } - return c; -} - -bool UnigramDictionary::sameAsTyped(const unsigned short *word, int length) const { - if (length != mInputLength) { - return false; - } - const int *inputCodes = mInputCodes; - while (length--) { - if ((unsigned int) *inputCodes != (unsigned int) *word) { - return false; - } - inputCodes += MAX_PROXIMITY_CHARS; - word++; - } - return true; -} - -static const char QUOTE = '\''; -static const char SPACE = ' '; - -void UnigramDictionary::getSuggestionCandidates(const int skipPos, - const int excessivePos, const int transposedPos, int *nextLetters, - const int nextLettersSize, const int maxDepth) { - if (DEBUG_DICT) { - LOGI("getSuggestionCandidates %d", maxDepth); - assert(transposedPos + 1 < mInputLength); - assert(excessivePos < mInputLength); - assert(missingPos < mInputLength); - } - int rootPosition = ROOT_POS; - // Get the number of child of root, then increment the position - int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition); - int depth = 0; - - mStackChildCount[0] = childCount; - mStackTraverseAll[0] = (mInputLength <= 0); - mStackNodeFreq[0] = 1; - mStackInputIndex[0] = 0; - mStackDiffs[0] = 0; - mStackSiblingPos[0] = rootPosition; - mStackOutputIndex[0] = 0; - - // Depth first search - while (depth >= 0) { - if (mStackChildCount[depth] > 0) { - --mStackChildCount[depth]; - bool traverseAllNodes = mStackTraverseAll[depth]; - int matchWeight = mStackNodeFreq[depth]; - int inputIndex = mStackInputIndex[depth]; - int diffs = mStackDiffs[depth]; - int siblingPos = mStackSiblingPos[depth]; - int outputIndex = mStackOutputIndex[depth]; - int firstChildPos; - // depth will never be greater than maxDepth because in that case, - // needsToTraverseChildrenNodes should be false - const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, outputIndex, - maxDepth, traverseAllNodes, matchWeight, inputIndex, diffs, skipPos, - excessivePos, transposedPos, nextLetters, nextLettersSize, &childCount, - &firstChildPos, &traverseAllNodes, &matchWeight, &inputIndex, &diffs, - &siblingPos, &outputIndex); - // Update next sibling pos - mStackSiblingPos[depth] = siblingPos; - if (needsToTraverseChildrenNodes) { - // Goes to child node - ++depth; - mStackChildCount[depth] = childCount; - mStackTraverseAll[depth] = traverseAllNodes; - mStackNodeFreq[depth] = matchWeight; - mStackInputIndex[depth] = inputIndex; - mStackDiffs[depth] = diffs; - mStackSiblingPos[depth] = firstChildPos; - mStackOutputIndex[depth] = outputIndex; - } - } else { - // Goes to parent sibling node - --depth; - } - } -} - -static const int TWO_31ST_DIV_255 = S_INT_MAX / 255; -static inline int capped255MultForFullMatchAccentsOrCapitalizationDifference(const int num) { - return (num < TWO_31ST_DIV_255 ? 255 * num : S_INT_MAX); -} - -static const int TWO_31ST_DIV_2 = S_INT_MAX / 2; -inline static void multiplyIntCapped(const int multiplier, int *base) { - const int temp = *base; - if (temp != S_INT_MAX) { - // Branch if multiplier == 2 for the optimization - if (multiplier == 2) { - *base = TWO_31ST_DIV_2 >= temp ? temp << 1 : S_INT_MAX; - } else { - const int tempRetval = temp * multiplier; - *base = tempRetval >= temp ? tempRetval : S_INT_MAX; - } - } -} - -inline static int powerIntCapped(const int base, const int n) { - if (base == 2) { - return n < 31 ? 1 << n : S_INT_MAX; - } else { - int ret = base; - for (int i = 1; i < n; ++i) multiplyIntCapped(base, &ret); - return ret; - } -} - -inline static void multiplyRate(const int rate, int *freq) { - if (*freq != S_INT_MAX) { - if (*freq > 1000000) { - *freq /= 100; - multiplyIntCapped(rate, freq); - } else { - multiplyIntCapped(rate, freq); - *freq /= 100; - } - } -} - -inline static int calcFreqForSplitTwoWords( - const int typedLetterMultiplier, const int firstWordLength, const int secondWordLength, - const int firstFreq, const int secondFreq, const bool isSpaceProximity) { - if (firstWordLength == 0 || secondWordLength == 0) { - return 0; - } - const int firstDemotionRate = 100 - 100 / (firstWordLength + 1); - int tempFirstFreq = firstFreq; - multiplyRate(firstDemotionRate, &tempFirstFreq); - - const int secondDemotionRate = 100 - 100 / (secondWordLength + 1); - int tempSecondFreq = secondFreq; - multiplyRate(secondDemotionRate, &tempSecondFreq); - - const int totalLength = firstWordLength + secondWordLength; - - // Promote pairFreq with multiplying by 2, because the word length is the same as the typed - // length. - int totalFreq = tempFirstFreq + tempSecondFreq; - - // This is a workaround to try offsetting the not-enough-demotion which will be done in - // calcNormalizedScore in Utils.java. - // In calcNormalizedScore the score will be demoted by (1 - 1 / length) - // but we demoted only (1 - 1 / (length + 1)) so we will additionally adjust freq by - // (1 - 1 / length) / (1 - 1 / (length + 1)) = (1 - 1 / (length * length)) - const int normalizedScoreNotEnoughDemotionAdjustment = 100 - 100 / (totalLength * totalLength); - multiplyRate(normalizedScoreNotEnoughDemotionAdjustment, &totalFreq); - - // At this moment, totalFreq is calculated by the following formula: - // (firstFreq * (1 - 1 / (firstWordLength + 1)) + secondFreq * (1 - 1 / (secondWordLength + 1))) - // * (1 - 1 / totalLength) / (1 - 1 / (totalLength + 1)) - - multiplyIntCapped(powerIntCapped(typedLetterMultiplier, totalLength), &totalFreq); - - // This is another workaround to offset the demotion which will be done in - // calcNormalizedScore in Utils.java. - // In calcNormalizedScore the score will be demoted by (1 - 1 / length) so we have to promote - // the same amount because we already have adjusted the synthetic freq of this "missing or - // mistyped space" suggestion candidate above in this method. - const int normalizedScoreDemotionRateOffset = (100 + 100 / totalLength); - multiplyRate(normalizedScoreDemotionRateOffset, &totalFreq); - - if (isSpaceProximity) { - // A word pair with one space proximity correction - if (DEBUG_DICT) { - LOGI("Found a word pair with space proximity correction."); - } - multiplyIntCapped(typedLetterMultiplier, &totalFreq); - multiplyRate(WORDS_WITH_PROXIMITY_CHARACTER_DEMOTION_RATE, &totalFreq); - } - - multiplyRate(WORDS_WITH_MISSING_SPACE_CHARACTER_DEMOTION_RATE, &totalFreq); - return totalFreq; -} - -bool UnigramDictionary::getMissingSpaceWords(const int inputLength, const int missingSpacePos) { - return getSplitTwoWordsSuggestion( - inputLength, 0, missingSpacePos, missingSpacePos, inputLength - missingSpacePos, false); -} - -bool UnigramDictionary::getMistypedSpaceWords(const int inputLength, const int spaceProximityPos) { - return getSplitTwoWordsSuggestion( - inputLength, 0, spaceProximityPos, spaceProximityPos + 1, - inputLength - spaceProximityPos - 1, true); -} - -inline int UnigramDictionary::calculateFinalFreq(const int inputIndex, const int depth, - const int matchWeight, const int skipPos, const int excessivePos, const int transposedPos, - const int freq, const bool sameLength) const { - // TODO: Demote by edit distance - int finalFreq = freq * matchWeight; - if (skipPos >= 0) { - if (mInputLength >= 2) { - const int demotionRate = WORDS_WITH_MISSING_CHARACTER_DEMOTION_RATE - * (10 * mInputLength - WORDS_WITH_MISSING_CHARACTER_DEMOTION_START_POS_10X) - / (10 * mInputLength - - WORDS_WITH_MISSING_CHARACTER_DEMOTION_START_POS_10X + 10); - if (DEBUG_DICT_FULL) { - LOGI("Demotion rate for missing character is %d.", demotionRate); - } - multiplyRate(demotionRate, &finalFreq); - } else { - finalFreq = 0; - } - } - if (transposedPos >= 0) multiplyRate( - WORDS_WITH_TRANSPOSED_CHARACTERS_DEMOTION_RATE, &finalFreq); - if (excessivePos >= 0) { - multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_DEMOTION_RATE, &finalFreq); - if (!existsAdjacentProximityChars(inputIndex, mInputLength)) { - multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_OUT_OF_PROXIMITY_DEMOTION_RATE, &finalFreq); - } - } - int lengthFreq = TYPED_LETTER_MULTIPLIER; - multiplyIntCapped(powerIntCapped(TYPED_LETTER_MULTIPLIER, depth), &lengthFreq); - if (lengthFreq == matchWeight) { - // Full exact match - if (depth > 1) { - if (DEBUG_DICT) { - LOGI("Found full matched word."); - } - multiplyRate(FULL_MATCHED_WORDS_PROMOTION_RATE, &finalFreq); - } - if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0) { - finalFreq = capped255MultForFullMatchAccentsOrCapitalizationDifference(finalFreq); - } - } else if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0 && depth > 0) { - // A word with proximity corrections - if (DEBUG_DICT) { - LOGI("Found one proximity correction."); - } - multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &finalFreq); - multiplyRate(WORDS_WITH_PROXIMITY_CHARACTER_DEMOTION_RATE, &finalFreq); - } - if (DEBUG_DICT) { - LOGI("calc: %d, %d", depth, sameLength); - } - if (sameLength) multiplyIntCapped(FULL_WORD_MULTIPLIER, &finalFreq); - return finalFreq; -} - -inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c, - const int inputIndex, const int skipPos, const int depth) { - const unsigned short userTypedChar = getInputCharsAt(inputIndex)[0]; - // Skip the ' or other letter and continue deeper - return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth; -} - -inline bool UnigramDictionary::existsAdjacentProximityChars(const int inputIndex, - const int inputLength) const { - if (inputIndex < 0 || inputIndex >= inputLength) return false; - const int currentChar = *getInputCharsAt(inputIndex); - const int leftIndex = inputIndex - 1; - if (leftIndex >= 0) { - const int *leftChars = getInputCharsAt(leftIndex); - int i = 0; - while (leftChars[i] > 0 && i < MAX_PROXIMITY_CHARS) { - if (leftChars[i++] == currentChar) return true; - } - } - const int rightIndex = inputIndex + 1; - if (rightIndex < inputLength) { - const int *rightChars = getInputCharsAt(rightIndex); - int i = 0; - while (rightChars[i] > 0 && i < MAX_PROXIMITY_CHARS) { - if (rightChars[i++] == currentChar) return true; - } - } - return false; -} - -// In the following function, c is the current character of the dictionary word -// currently examined. -// currentChars is an array containing the keys close to the character the -// user actually typed at the same position. We want to see if c is in it: if so, -// then the word contains at that position a character close to what the user -// typed. -// What the user typed is actually the first character of the array. -// Notice : accented characters do not have a proximity list, so they are alone -// in their list. The non-accented version of the character should be considered -// "close", but not the other keys close to the non-accented version. -inline UnigramDictionary::ProximityType UnigramDictionary::getMatchedProximityId( - const int *currentChars, const unsigned short c, const int skipPos, - const int excessivePos, const int transposedPos) { - const unsigned short baseLowerC = toBaseLowerCase(c); - - // The first char in the array is what user typed. If it matches right away, - // that means the user typed that same char for this pos. - if (currentChars[0] == baseLowerC || currentChars[0] == c) - return SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR; - - // If one of those is true, we should not check for close characters at all. - if (skipPos >= 0 || excessivePos >= 0 || transposedPos >= 0) - return UNRELATED_CHAR; - - // If the non-accented, lowercased version of that first character matches c, - // then we have a non-accented version of the accented character the user - // typed. Treat it as a close char. - if (toBaseLowerCase(currentChars[0]) == baseLowerC) - return NEAR_PROXIMITY_CHAR; - - // Not an exact nor an accent-alike match: search the list of close keys - int j = 1; - while (currentChars[j] > 0 && j < MAX_PROXIMITY_CHARS) { - const bool matched = (currentChars[j] == baseLowerC || currentChars[j] == c); - if (matched) return NEAR_PROXIMITY_CHAR; - ++j; - } - - // Was not included, signal this as an unrelated character. - return UNRELATED_CHAR; -} - -inline void UnigramDictionary::onTerminal(unsigned short int* word, const int depth, - const uint8_t* const root, const uint8_t flags, int pos, - const int inputIndex, const int matchWeight, const int skipPos, - const int excessivePos, const int transposedPos, const int freq, const bool sameLength, - int* nextLetters, const int nextLettersSize) { - - const bool isSameAsTyped = sameLength ? sameAsTyped(word, depth + 1) : false; - const bool hasAlternates = hasAlternateSpellings(flags); - if (isSameAsTyped && !hasAlternates) return; - - if (depth >= MIN_SUGGEST_DEPTH) { - const int finalFreq = calculateFinalFreq(inputIndex, depth, matchWeight, skipPos, - excessivePos, transposedPos, freq, sameLength); - if (!isSameAsTyped) - addWord(word, depth + 1, finalFreq); - if (hasAlternates) - addWordAlternatesSpellings(DICT_ROOT, pos, flags, finalFreq); - } - - if (sameLength && depth >= mInputLength && skipPos < 0) { - registerNextLetter(word[mInputLength], nextLetters, nextLettersSize); - } -} - -#ifndef NEW_DICTIONARY_FORMAT -// TODO: Don't forget to bring inline functions back to over where they are used. - -// The following functions will be entirely replaced with new implementations. -void UnigramDictionary::getWordsOld(const int initialPos, const int inputLength, const int skipPos, - const int excessivePos, const int transposedPos,int *nextLetters, - const int nextLettersSize) { - int initialPosition = initialPos; - const int count = Dictionary::getCount(DICT_ROOT, &initialPosition); - getWordsRec(count, initialPosition, 0, - min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH), - mInputLength <= 0, 1, 0, 0, skipPos, excessivePos, transposedPos, nextLetters, - nextLettersSize); -} - -void UnigramDictionary::getWordsRec(const int childrenCount, const int pos, const int depth, - const int maxDepth, const bool traverseAllNodes, const int matchWeight, - const int inputIndex, const int diffs, const int skipPos, const int excessivePos, - const int transposedPos, int *nextLetters, const int nextLettersSize) { - int siblingPos = pos; - for (int i = 0; i < childrenCount; ++i) { - int newCount; - int newChildPosition; - bool newTraverseAllNodes; - int newMatchRate; - int newInputIndex; - int newDiffs; - int newSiblingPos; - int newOutputIndex; - const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth, maxDepth, - traverseAllNodes, matchWeight, inputIndex, diffs, - skipPos, excessivePos, transposedPos, - nextLetters, nextLettersSize, - &newCount, &newChildPosition, &newTraverseAllNodes, &newMatchRate, - &newInputIndex, &newDiffs, &newSiblingPos, &newOutputIndex); - siblingPos = newSiblingPos; - - if (needsToTraverseChildrenNodes) { - getWordsRec(newCount, newChildPosition, newOutputIndex, maxDepth, newTraverseAllNodes, - newMatchRate, newInputIndex, newDiffs, skipPos, excessivePos, transposedPos, - nextLetters, nextLettersSize); - } - } -} - -inline int UnigramDictionary::getBestWordFreq(const int startInputIndex, const int inputLength, - unsigned short *word) { - int pos = ROOT_POS; - int count = Dictionary::getCount(DICT_ROOT, &pos); - int maxFreq = 0; - int depth = 0; - unsigned short newWord[MAX_WORD_LENGTH_INTERNAL]; - bool terminal = false; - - mStackChildCount[0] = count; - mStackSiblingPos[0] = pos; - - while (depth >= 0) { - if (mStackChildCount[depth] > 0) { - --mStackChildCount[depth]; - int firstChildPos; - int newFreq; - int siblingPos = mStackSiblingPos[depth]; - const bool needsToTraverseChildrenNodes = processCurrentNodeForExactMatch(siblingPos, - startInputIndex, depth, newWord, &firstChildPos, &count, &terminal, &newFreq, - &siblingPos); - mStackSiblingPos[depth] = siblingPos; - if (depth == (inputLength - 1)) { - // Traverse sibling node - if (terminal) { - if (newFreq > maxFreq) { - for (int i = 0; i < inputLength; ++i) word[i] = newWord[i]; - if (DEBUG_DICT && DEBUG_NODE) { - char s[inputLength + 1]; - for (int i = 0; i < inputLength; ++i) s[i] = word[i]; - s[inputLength] = 0; - LOGI("New missing space word found: %d > %d (%s), %d, %d", - newFreq, maxFreq, s, inputLength, depth); - } - maxFreq = newFreq; - } - } - } else if (needsToTraverseChildrenNodes) { - // Traverse children nodes - ++depth; - mStackChildCount[depth] = count; - mStackSiblingPos[depth] = firstChildPos; - } - } else { - // Traverse parent node - --depth; - } - } - - word[inputLength] = 0; - return maxFreq; -} - -inline bool UnigramDictionary::processCurrentNodeForExactMatch(const int firstChildPos, - const int startInputIndex, const int depth, unsigned short *word, int *newChildPosition, - int *newCount, bool *newTerminal, int *newFreq, int *siblingPos) { - const int inputIndex = startInputIndex + depth; - const int *currentChars = getInputCharsAt(inputIndex); - unsigned short c; - *siblingPos = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, firstChildPos, - &c, newChildPosition, newTerminal, newFreq); - const unsigned int inputC = currentChars[0]; - if (DEBUG_DICT) { - assert(inputC <= U_SHORT_MAX); - } - const unsigned short baseLowerC = toBaseLowerCase(c); - const bool matched = (inputC == baseLowerC || inputC == c); - const bool hasChild = *newChildPosition != 0; - if (matched) { - word[depth] = c; - if (DEBUG_DICT && DEBUG_NODE) { - LOGI("Node(%c, %c)<%d>, %d, %d", inputC, c, matched, hasChild, *newFreq); - if (*newTerminal) { - LOGI("Terminal %d", *newFreq); - } - } - if (hasChild) { - *newCount = Dictionary::getCount(DICT_ROOT, newChildPosition); - return true; - } else { - return false; - } - } else { - // If this node is not user typed character, this method treats this word as unmatched. - // Thus newTerminal shouldn't be true. - *newTerminal = false; - return false; - } -} - -// TODO: use uint32_t instead of unsigned short -bool UnigramDictionary::isValidWord(unsigned short *word, int length) { - if (IS_LATEST_DICT_VERSION) { - return (getBigramPosition(DICTIONARY_HEADER_SIZE, word, 0, length) != NOT_VALID_WORD); - } else { - return (getBigramPosition(0, word, 0, length) != NOT_VALID_WORD); - } -} - - -// Require strict exact match. -int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset, - int length) const { - // returns address of bigram data of that word - // return -99 if not found - - int count = Dictionary::getCount(DICT_ROOT, &pos); - unsigned short currentChar = (unsigned short) word[offset]; - for (int j = 0; j < count; j++) { - unsigned short c = Dictionary::getChar(DICT_ROOT, &pos); - int terminal = Dictionary::getTerminal(DICT_ROOT, &pos); - int childPos = Dictionary::getAddress(DICT_ROOT, &pos); - if (c == currentChar) { - if (offset == length - 1) { - if (terminal) { - return (pos+1); - } - } else { - if (childPos != 0) { - int t = getBigramPosition(childPos, word, offset + 1, length); - if (t > 0) { - return t; - } - } - } - } - if (terminal) { - Dictionary::getFreq(DICT_ROOT, IS_LATEST_DICT_VERSION, &pos); - } - // There could be two instances of each alphabet - upper and lower case. So continue - // looking ... - } - return NOT_VALID_WORD; -} - - -// The following functions will be modified. -bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength, - const int firstWordStartPos, const int firstWordLength, const int secondWordStartPos, - const int secondWordLength, const bool isSpaceProximity) { - if (inputLength >= MAX_WORD_LENGTH) return false; - if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos - || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength) - return false; - const int newWordLength = firstWordLength + secondWordLength + 1; - // Allocating variable length array on stack - unsigned short word[newWordLength]; - const int firstFreq = getBestWordFreq(firstWordStartPos, firstWordLength, mWord); - if (DEBUG_DICT) { - LOGI("First freq: %d", firstFreq); - } - if (firstFreq <= 0) return false; - - for (int i = 0; i < firstWordLength; ++i) { - word[i] = mWord[i]; - } - - const int secondFreq = getBestWordFreq(secondWordStartPos, secondWordLength, mWord); - if (DEBUG_DICT) { - LOGI("Second freq: %d", secondFreq); - } - if (secondFreq <= 0) return false; - - word[firstWordLength] = SPACE; - for (int i = (firstWordLength + 1); i < newWordLength; ++i) { - word[i] = mWord[i - firstWordLength - 1]; - } - - int pairFreq = calcFreqForSplitTwoWords(TYPED_LETTER_MULTIPLIER, firstWordLength, - secondWordLength, firstFreq, secondFreq, isSpaceProximity); - if (DEBUG_DICT) { - LOGI("Split two words: %d, %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength, - TYPED_LETTER_MULTIPLIER); - } - addWord(word, newWordLength, pairFreq); - return true; -} - -inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth, - const int maxDepth, const bool traverseAllNodes, int matchWeight, int inputIndex, - const int diffs, const int skipPos, const int excessivePos, const int transposedPos, - int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition, - bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs, - int *nextSiblingPosition, int *nextOutputIndex) { - if (DEBUG_DICT) { - int inputCount = 0; - if (skipPos >= 0) ++inputCount; - if (excessivePos >= 0) ++inputCount; - if (transposedPos >= 0) ++inputCount; - assert(inputCount <= 1); - } - unsigned short c; - int childPosition; - bool terminal; - int freq; - bool isSameAsUserTypedLength = false; - - const uint8_t flags = 0; // No flags for now - - if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex; - - *nextSiblingPosition = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, pos, - &c, &childPosition, &terminal, &freq); - *nextOutputIndex = depth + 1; - - const bool needsToTraverseChildrenNodes = childPosition != 0; - - // If we are only doing traverseAllNodes, no need to look at the typed characters. - if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) { - mWord[depth] = c; - if (traverseAllNodes && terminal) { - onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos, - excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize); - } - if (!needsToTraverseChildrenNodes) return false; - *newTraverseAllNodes = traverseAllNodes; - *newMatchRate = matchWeight; - *newDiffs = diffs; - *newInputIndex = inputIndex; - } else { - const int *currentChars = getInputCharsAt(inputIndex); - - if (transposedPos >= 0) { - if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS; - if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS; - } - - int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos, - transposedPos); - if (UNRELATED_CHAR == matchedProximityCharId) return false; - mWord[depth] = c; - // If inputIndex is greater than mInputLength, that means there is no - // proximity chars. So, we don't need to check proximity. - if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) { - multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight); - } - bool isSameAsUserTypedLength = mInputLength == inputIndex + 1 - || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2); - if (isSameAsUserTypedLength && terminal) { - onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos, - excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize); - } - if (!needsToTraverseChildrenNodes) return false; - // Start traversing all nodes after the index exceeds the user typed length - *newTraverseAllNodes = isSameAsUserTypedLength; - *newMatchRate = matchWeight; - *newDiffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0); - *newInputIndex = inputIndex + 1; - } - // Optimization: Prune out words that are too long compared to how much was typed. - if (depth >= maxDepth || *newDiffs > mMaxEditDistance) { - return false; - } - - // If inputIndex is greater than mInputLength, that means there are no proximity chars. - // TODO: Check if this can be isSameAsUserTypedLength only. - if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) { - *newTraverseAllNodes = true; - } - // get the count of nodes and increment childAddress. - *newCount = Dictionary::getCount(DICT_ROOT, &childPosition); - *newChildPosition = childPosition; - if (DEBUG_DICT) assert(needsToTraverseChildrenNodes); - return needsToTraverseChildrenNodes; -} - -#else // NEW_DICTIONARY_FORMAT - -bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength, - const int firstWordStartPos, const int firstWordLength, const int secondWordStartPos, - const int secondWordLength, const bool isSpaceProximity) { - if (inputLength >= MAX_WORD_LENGTH) return false; - if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos - || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength) - return false; - const int newWordLength = firstWordLength + secondWordLength + 1; - // Allocating variable length array on stack - unsigned short word[newWordLength]; - const int firstFreq = getBestWordFreq(firstWordStartPos, firstWordLength, mWord); - if (DEBUG_DICT) { - LOGI("First freq: %d", firstFreq); - } - if (firstFreq <= 0) return false; - - for (int i = 0; i < firstWordLength; ++i) { - word[i] = mWord[i]; - } - - const int secondFreq = getBestWordFreq(secondWordStartPos, secondWordLength, mWord); - if (DEBUG_DICT) { - LOGI("Second freq: %d", secondFreq); - } - if (secondFreq <= 0) return false; - - word[firstWordLength] = SPACE; - for (int i = (firstWordLength + 1); i < newWordLength; ++i) { - word[i] = mWord[i - firstWordLength - 1]; - } - - int pairFreq = calcFreqForSplitTwoWords(TYPED_LETTER_MULTIPLIER, firstWordLength, - secondWordLength, firstFreq, secondFreq, isSpaceProximity); - if (DEBUG_DICT) { - LOGI("Split two words: %d, %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength, - TYPED_LETTER_MULTIPLIER); - } - addWord(word, newWordLength, pairFreq); - return true; -} - -inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth, - const int maxDepth, const bool traverseAllNodes, int matchWeight, int inputIndex, - const int diffs, const int skipPos, const int excessivePos, const int transposedPos, - int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition, - bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs, - int *nextSiblingPosition, int *nextOutputIndex) { - if (DEBUG_DICT) { - int inputCount = 0; - if (skipPos >= 0) ++inputCount; - if (excessivePos >= 0) ++inputCount; - if (transposedPos >= 0) ++inputCount; - assert(inputCount <= 1); - } - unsigned short c; - int childPosition; - bool terminal; - int freq; - bool isSameAsUserTypedLength = false; - - const uint8_t flags = 0; // No flags for now - - if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex; - - *nextSiblingPosition = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, pos, - &c, &childPosition, &terminal, &freq); - *nextOutputIndex = depth + 1; - - const bool needsToTraverseChildrenNodes = childPosition != 0; - - // If we are only doing traverseAllNodes, no need to look at the typed characters. - if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) { - mWord[depth] = c; - if (traverseAllNodes && terminal) { - onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos, - excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize); - } - if (!needsToTraverseChildrenNodes) return false; - *newTraverseAllNodes = traverseAllNodes; - *newMatchRate = matchWeight; - *newDiffs = diffs; - *newInputIndex = inputIndex; - } else { - const int *currentChars = getInputCharsAt(inputIndex); - - if (transposedPos >= 0) { - if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS; - if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS; - } - - int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos, - transposedPos); - if (UNRELATED_CHAR == matchedProximityCharId) return false; - mWord[depth] = c; - // If inputIndex is greater than mInputLength, that means there is no - // proximity chars. So, we don't need to check proximity. - if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) { - multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight); - } - bool isSameAsUserTypedLength = mInputLength == inputIndex + 1 - || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2); - if (isSameAsUserTypedLength && terminal) { - onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos, - excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize); - } - if (!needsToTraverseChildrenNodes) return false; - // Start traversing all nodes after the index exceeds the user typed length - *newTraverseAllNodes = isSameAsUserTypedLength; - *newMatchRate = matchWeight; - *newDiffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0); - *newInputIndex = inputIndex + 1; - } - // Optimization: Prune out words that are too long compared to how much was typed. - if (depth >= maxDepth || *newDiffs > mMaxEditDistance) { - return false; - } - - // If inputIndex is greater than mInputLength, that means there are no proximity chars. - // TODO: Check if this can be isSameAsUserTypedLength only. - if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) { - *newTraverseAllNodes = true; - } - // get the count of nodes and increment childAddress. - *newCount = Dictionary::getCount(DICT_ROOT, &childPosition); - *newChildPosition = childPosition; - if (DEBUG_DICT) assert(needsToTraverseChildrenNodes); - return needsToTraverseChildrenNodes; -} - -#endif // NEW_DICTIONARY_FORMAT - -} // namespace latinime |