aboutsummaryrefslogtreecommitdiffstats
path: root/native/src/unigram_dictionary.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'native/src/unigram_dictionary.cpp')
-rw-r--r--native/src/unigram_dictionary.cpp1127
1 files changed, 0 insertions, 1127 deletions
diff --git a/native/src/unigram_dictionary.cpp b/native/src/unigram_dictionary.cpp
deleted file mode 100644
index e3296f12a..000000000
--- a/native/src/unigram_dictionary.cpp
+++ /dev/null
@@ -1,1127 +0,0 @@
-/*
-**
-** Copyright 2010, The Android Open Source Project
-**
-** Licensed under the Apache License, Version 2.0 (the "License");
-** you may not use this file except in compliance with the License.
-** You may obtain a copy of the License at
-**
-** http://www.apache.org/licenses/LICENSE-2.0
-**
-** Unless required by applicable law or agreed to in writing, software
-** distributed under the License is distributed on an "AS IS" BASIS,
-** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-** See the License for the specific language governing permissions and
-** limitations under the License.
-*/
-
-#include <assert.h>
-#include <string.h>
-
-#define LOG_TAG "LatinIME: unigram_dictionary.cpp"
-
-#include "basechars.h"
-#include "char_utils.h"
-#include "dictionary.h"
-#include "unigram_dictionary.h"
-
-namespace latinime {
-
-const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
- { { 'a', 'e' },
- { 'o', 'e' },
- { 'u', 'e' } };
-
-// TODO: check the header
-UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier,
- int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars,
- const bool isLatestDictVersion)
- : DICT_ROOT(streamStart),
- MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
- MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion),
- TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
- ROOT_POS(isLatestDictVersion ? DICTIONARY_HEADER_SIZE : 0),
- BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(*mInputCodes)),
- MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) {
- if (DEBUG_DICT) {
- LOGI("UnigramDictionary - constructor");
- }
-}
-
-UnigramDictionary::~UnigramDictionary() {}
-
-static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize,
- const int MAX_PROXIMITY_CHARS) {
- return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize;
-}
-
-bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const {
-
- // There can't be a digraph if we don't have at least 2 characters to examine
- if (i + 2 > codesSize) return false;
-
- // Search for the first char of some digraph
- int lastDigraphIndex = -1;
- const int thisChar = codes[i * MAX_PROXIMITY_CHARS];
- for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1;
- lastDigraphIndex >= 0; --lastDigraphIndex) {
- if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break;
- }
- // No match: return early
- if (lastDigraphIndex < 0) return false;
-
- // It's an interesting digraph if the second char matches too.
- return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS];
-}
-
-// Mostly the same arguments as the non-recursive version, except:
-// codes is the original value. It points to the start of the work buffer, and gets passed as is.
-// codesSize is the size of the user input (thus, it is the size of codesSrc).
-// codesDest is the current point in the work buffer.
-// codesSrc is the current point in the user-input, original, content-unmodified buffer.
-// codesRemain is the remaining size in codesSrc.
-void UnigramDictionary::getWordWithDigraphSuggestionsRec(const ProximityInfo *proximityInfo,
- const int *xcoordinates, const int* ycoordinates, const int *codesBuffer,
- const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain,
- const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) {
-
- if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) {
- for (int i = 0; i < codesRemain; ++i) {
- if (isDigraph(codesSrc, i, codesRemain)) {
- // Found a digraph. We will try both spellings. eg. the word is "pruefen"
-
- // Copy the word up to the first char of the digraph, then continue processing
- // on the remaining part of the word, skipping the second char of the digraph.
- // In our example, copy "pru" and continue running on "fen"
- // Make i the index of the second char of the digraph for simplicity. Forgetting
- // to do that results in an infinite recursion so take care!
- ++i;
- memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR);
- getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
- codesBuffer, codesBufferSize, flags,
- codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1,
- currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords,
- frequencies);
-
- // Copy the second char of the digraph in place, then continue processing on
- // the remaining part of the word.
- // In our example, after "pru" in the buffer copy the "e", and continue on "fen"
- memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS,
- BYTES_IN_ONE_CHAR);
- getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
- codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS,
- codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS,
- outWords, frequencies);
- return;
- }
- }
- }
-
- // If we come here, we hit the end of the word: let's check it against the dictionary.
- // In our example, we'll come here once for "prufen" and then once for "pruefen".
- // If the word contains several digraphs, we'll come it for the product of them.
- // eg. if the word is "ueberpruefen" we'll test, in order, against
- // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen".
- const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain;
- if (0 != remainingBytes)
- memcpy(codesDest, codesSrc, remainingBytes);
-
- getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
- (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies);
-}
-
-int UnigramDictionary::getSuggestions(const ProximityInfo *proximityInfo, const int *xcoordinates,
- const int *ycoordinates, const int *codes, const int codesSize, const int flags,
- unsigned short *outWords, int *frequencies) {
-
- if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags)
- { // Incrementally tune the word and try all possibilities
- int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)];
- getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
- codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies);
- } else { // Normal processing
- getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize,
- outWords, frequencies);
- }
-
- PROF_START(20);
- // Get the word count
- int suggestedWordsCount = 0;
- while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) {
- suggestedWordsCount++;
- }
-
- if (DEBUG_DICT) {
- LOGI("Returning %d words", suggestedWordsCount);
- LOGI("Next letters: ");
- for (int k = 0; k < NEXT_LETTERS_SIZE; k++) {
- if (mNextLettersFrequency[k] > 0) {
- LOGI("%c = %d,", k, mNextLettersFrequency[k]);
- }
- }
- }
- PROF_END(20);
- PROF_CLOSE;
- return suggestedWordsCount;
-}
-
-void UnigramDictionary::getWordSuggestions(const ProximityInfo *proximityInfo,
- const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize,
- unsigned short *outWords, int *frequencies) {
-
- PROF_OPEN;
- PROF_START(0);
- initSuggestions(codes, codesSize, outWords, frequencies);
- if (DEBUG_DICT) assert(codesSize == mInputLength);
-
- const int MAX_DEPTH = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
- PROF_END(0);
-
- PROF_START(1);
- getSuggestionCandidates(-1, -1, -1, mNextLettersFrequency, NEXT_LETTERS_SIZE, MAX_DEPTH);
- PROF_END(1);
-
- PROF_START(2);
- // Suggestion with missing character
- if (SUGGEST_WORDS_WITH_MISSING_CHARACTER) {
- for (int i = 0; i < codesSize; ++i) {
- if (DEBUG_DICT) {
- LOGI("--- Suggest missing characters %d", i);
- }
- getSuggestionCandidates(i, -1, -1, NULL, 0, MAX_DEPTH);
- }
- }
- PROF_END(2);
-
- PROF_START(3);
- // Suggestion with excessive character
- if (SUGGEST_WORDS_WITH_EXCESSIVE_CHARACTER
- && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_EXCESSIVE_CHARACTER_SUGGESTION) {
- for (int i = 0; i < codesSize; ++i) {
- if (DEBUG_DICT) {
- LOGI("--- Suggest excessive characters %d", i);
- }
- getSuggestionCandidates(-1, i, -1, NULL, 0, MAX_DEPTH);
- }
- }
- PROF_END(3);
-
- PROF_START(4);
- // Suggestion with transposed characters
- // Only suggest words that length is mInputLength
- if (SUGGEST_WORDS_WITH_TRANSPOSED_CHARACTERS) {
- for (int i = 0; i < codesSize; ++i) {
- if (DEBUG_DICT) {
- LOGI("--- Suggest transposed characters %d", i);
- }
- getSuggestionCandidates(-1, -1, i, NULL, 0, mInputLength - 1);
- }
- }
- PROF_END(4);
-
- PROF_START(5);
- // Suggestions with missing space
- if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER
- && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) {
- for (int i = 1; i < codesSize; ++i) {
- if (DEBUG_DICT) {
- LOGI("--- Suggest missing space characters %d", i);
- }
- getMissingSpaceWords(mInputLength, i);
- }
- }
- PROF_END(5);
-
- PROF_START(6);
- if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) {
- // The first and last "mistyped spaces" are taken care of by excessive character handling
- for (int i = 1; i < codesSize - 1; ++i) {
- if (DEBUG_DICT) {
- LOGI("--- Suggest words with proximity space %d", i);
- }
- const int x = xcoordinates[i];
- const int y = ycoordinates[i];
- if (DEBUG_PROXIMITY_INFO) {
- LOGI("Input[%d] x = %d, y = %d, has space proximity = %d",
- i, x, y, proximityInfo->hasSpaceProximity(x, y));
- }
- if (proximityInfo->hasSpaceProximity(x, y)) {
- getMistypedSpaceWords(mInputLength, i);
- }
- }
- }
- PROF_END(6);
-}
-
-void UnigramDictionary::initSuggestions(const int *codes, const int codesSize,
- unsigned short *outWords, int *frequencies) {
- if (DEBUG_DICT) {
- LOGI("initSuggest");
- }
- mFrequencies = frequencies;
- mOutputChars = outWords;
- mInputCodes = codes;
- mInputLength = codesSize;
- mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2;
-}
-
-static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) {
- if (c < nextLettersSize) {
- nextLetters[c]++;
- }
-}
-
-// TODO: We need to optimize addWord by using STL or something
-// TODO: This needs to take an const unsigned short* and not tinker with its contents
-bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) {
- word[length] = 0;
- if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) {
- char s[length + 1];
- for (int i = 0; i <= length; i++) s[i] = word[i];
- LOGI("Found word = %s, freq = %d", s, frequency);
- }
- if (length > MAX_WORD_LENGTH) {
- if (DEBUG_DICT) {
- LOGI("Exceeded max word length.");
- }
- return false;
- }
-
- // Find the right insertion point
- int insertAt = 0;
- while (insertAt < MAX_WORDS) {
- // TODO: How should we sort words with the same frequency?
- if (frequency > mFrequencies[insertAt]) {
- break;
- }
- insertAt++;
- }
- if (insertAt < MAX_WORDS) {
- if (DEBUG_DICT) {
- char s[length + 1];
- for (int i = 0; i <= length; i++) s[i] = word[i];
- LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX);
- }
- memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]),
- (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]),
- (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0]));
- mFrequencies[insertAt] = frequency;
- memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short),
- (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short),
- (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH);
- unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH;
- while (length--) {
- *dest++ = *word++;
- }
- *dest = 0; // NULL terminate
- if (DEBUG_DICT) {
- LOGI("Added word at %d", insertAt);
- }
- return true;
- }
- return false;
-}
-
-inline void UnigramDictionary::addWordAlternatesSpellings(const uint8_t* const root, int pos,
- int depth, int finalFreq) {
- // TODO: actually add alternates when the format supports it.
-}
-
-static inline bool hasAlternateSpellings(uint8_t flags) {
- // TODO: when the format supports it, return the actual value.
- return false;
-}
-
-static inline unsigned short toBaseLowerCase(unsigned short c) {
- if (c < sizeof(BASE_CHARS) / sizeof(BASE_CHARS[0])) {
- c = BASE_CHARS[c];
- }
- if (c >='A' && c <= 'Z') {
- c |= 32;
- } else if (c > 127) {
- c = latin_tolower(c);
- }
- return c;
-}
-
-bool UnigramDictionary::sameAsTyped(const unsigned short *word, int length) const {
- if (length != mInputLength) {
- return false;
- }
- const int *inputCodes = mInputCodes;
- while (length--) {
- if ((unsigned int) *inputCodes != (unsigned int) *word) {
- return false;
- }
- inputCodes += MAX_PROXIMITY_CHARS;
- word++;
- }
- return true;
-}
-
-static const char QUOTE = '\'';
-static const char SPACE = ' ';
-
-void UnigramDictionary::getSuggestionCandidates(const int skipPos,
- const int excessivePos, const int transposedPos, int *nextLetters,
- const int nextLettersSize, const int maxDepth) {
- if (DEBUG_DICT) {
- LOGI("getSuggestionCandidates %d", maxDepth);
- assert(transposedPos + 1 < mInputLength);
- assert(excessivePos < mInputLength);
- assert(missingPos < mInputLength);
- }
- int rootPosition = ROOT_POS;
- // Get the number of child of root, then increment the position
- int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition);
- int depth = 0;
-
- mStackChildCount[0] = childCount;
- mStackTraverseAll[0] = (mInputLength <= 0);
- mStackNodeFreq[0] = 1;
- mStackInputIndex[0] = 0;
- mStackDiffs[0] = 0;
- mStackSiblingPos[0] = rootPosition;
- mStackOutputIndex[0] = 0;
-
- // Depth first search
- while (depth >= 0) {
- if (mStackChildCount[depth] > 0) {
- --mStackChildCount[depth];
- bool traverseAllNodes = mStackTraverseAll[depth];
- int matchWeight = mStackNodeFreq[depth];
- int inputIndex = mStackInputIndex[depth];
- int diffs = mStackDiffs[depth];
- int siblingPos = mStackSiblingPos[depth];
- int outputIndex = mStackOutputIndex[depth];
- int firstChildPos;
- // depth will never be greater than maxDepth because in that case,
- // needsToTraverseChildrenNodes should be false
- const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, outputIndex,
- maxDepth, traverseAllNodes, matchWeight, inputIndex, diffs, skipPos,
- excessivePos, transposedPos, nextLetters, nextLettersSize, &childCount,
- &firstChildPos, &traverseAllNodes, &matchWeight, &inputIndex, &diffs,
- &siblingPos, &outputIndex);
- // Update next sibling pos
- mStackSiblingPos[depth] = siblingPos;
- if (needsToTraverseChildrenNodes) {
- // Goes to child node
- ++depth;
- mStackChildCount[depth] = childCount;
- mStackTraverseAll[depth] = traverseAllNodes;
- mStackNodeFreq[depth] = matchWeight;
- mStackInputIndex[depth] = inputIndex;
- mStackDiffs[depth] = diffs;
- mStackSiblingPos[depth] = firstChildPos;
- mStackOutputIndex[depth] = outputIndex;
- }
- } else {
- // Goes to parent sibling node
- --depth;
- }
- }
-}
-
-static const int TWO_31ST_DIV_255 = S_INT_MAX / 255;
-static inline int capped255MultForFullMatchAccentsOrCapitalizationDifference(const int num) {
- return (num < TWO_31ST_DIV_255 ? 255 * num : S_INT_MAX);
-}
-
-static const int TWO_31ST_DIV_2 = S_INT_MAX / 2;
-inline static void multiplyIntCapped(const int multiplier, int *base) {
- const int temp = *base;
- if (temp != S_INT_MAX) {
- // Branch if multiplier == 2 for the optimization
- if (multiplier == 2) {
- *base = TWO_31ST_DIV_2 >= temp ? temp << 1 : S_INT_MAX;
- } else {
- const int tempRetval = temp * multiplier;
- *base = tempRetval >= temp ? tempRetval : S_INT_MAX;
- }
- }
-}
-
-inline static int powerIntCapped(const int base, const int n) {
- if (base == 2) {
- return n < 31 ? 1 << n : S_INT_MAX;
- } else {
- int ret = base;
- for (int i = 1; i < n; ++i) multiplyIntCapped(base, &ret);
- return ret;
- }
-}
-
-inline static void multiplyRate(const int rate, int *freq) {
- if (*freq != S_INT_MAX) {
- if (*freq > 1000000) {
- *freq /= 100;
- multiplyIntCapped(rate, freq);
- } else {
- multiplyIntCapped(rate, freq);
- *freq /= 100;
- }
- }
-}
-
-inline static int calcFreqForSplitTwoWords(
- const int typedLetterMultiplier, const int firstWordLength, const int secondWordLength,
- const int firstFreq, const int secondFreq, const bool isSpaceProximity) {
- if (firstWordLength == 0 || secondWordLength == 0) {
- return 0;
- }
- const int firstDemotionRate = 100 - 100 / (firstWordLength + 1);
- int tempFirstFreq = firstFreq;
- multiplyRate(firstDemotionRate, &tempFirstFreq);
-
- const int secondDemotionRate = 100 - 100 / (secondWordLength + 1);
- int tempSecondFreq = secondFreq;
- multiplyRate(secondDemotionRate, &tempSecondFreq);
-
- const int totalLength = firstWordLength + secondWordLength;
-
- // Promote pairFreq with multiplying by 2, because the word length is the same as the typed
- // length.
- int totalFreq = tempFirstFreq + tempSecondFreq;
-
- // This is a workaround to try offsetting the not-enough-demotion which will be done in
- // calcNormalizedScore in Utils.java.
- // In calcNormalizedScore the score will be demoted by (1 - 1 / length)
- // but we demoted only (1 - 1 / (length + 1)) so we will additionally adjust freq by
- // (1 - 1 / length) / (1 - 1 / (length + 1)) = (1 - 1 / (length * length))
- const int normalizedScoreNotEnoughDemotionAdjustment = 100 - 100 / (totalLength * totalLength);
- multiplyRate(normalizedScoreNotEnoughDemotionAdjustment, &totalFreq);
-
- // At this moment, totalFreq is calculated by the following formula:
- // (firstFreq * (1 - 1 / (firstWordLength + 1)) + secondFreq * (1 - 1 / (secondWordLength + 1)))
- // * (1 - 1 / totalLength) / (1 - 1 / (totalLength + 1))
-
- multiplyIntCapped(powerIntCapped(typedLetterMultiplier, totalLength), &totalFreq);
-
- // This is another workaround to offset the demotion which will be done in
- // calcNormalizedScore in Utils.java.
- // In calcNormalizedScore the score will be demoted by (1 - 1 / length) so we have to promote
- // the same amount because we already have adjusted the synthetic freq of this "missing or
- // mistyped space" suggestion candidate above in this method.
- const int normalizedScoreDemotionRateOffset = (100 + 100 / totalLength);
- multiplyRate(normalizedScoreDemotionRateOffset, &totalFreq);
-
- if (isSpaceProximity) {
- // A word pair with one space proximity correction
- if (DEBUG_DICT) {
- LOGI("Found a word pair with space proximity correction.");
- }
- multiplyIntCapped(typedLetterMultiplier, &totalFreq);
- multiplyRate(WORDS_WITH_PROXIMITY_CHARACTER_DEMOTION_RATE, &totalFreq);
- }
-
- multiplyRate(WORDS_WITH_MISSING_SPACE_CHARACTER_DEMOTION_RATE, &totalFreq);
- return totalFreq;
-}
-
-bool UnigramDictionary::getMissingSpaceWords(const int inputLength, const int missingSpacePos) {
- return getSplitTwoWordsSuggestion(
- inputLength, 0, missingSpacePos, missingSpacePos, inputLength - missingSpacePos, false);
-}
-
-bool UnigramDictionary::getMistypedSpaceWords(const int inputLength, const int spaceProximityPos) {
- return getSplitTwoWordsSuggestion(
- inputLength, 0, spaceProximityPos, spaceProximityPos + 1,
- inputLength - spaceProximityPos - 1, true);
-}
-
-inline int UnigramDictionary::calculateFinalFreq(const int inputIndex, const int depth,
- const int matchWeight, const int skipPos, const int excessivePos, const int transposedPos,
- const int freq, const bool sameLength) const {
- // TODO: Demote by edit distance
- int finalFreq = freq * matchWeight;
- if (skipPos >= 0) {
- if (mInputLength >= 2) {
- const int demotionRate = WORDS_WITH_MISSING_CHARACTER_DEMOTION_RATE
- * (10 * mInputLength - WORDS_WITH_MISSING_CHARACTER_DEMOTION_START_POS_10X)
- / (10 * mInputLength
- - WORDS_WITH_MISSING_CHARACTER_DEMOTION_START_POS_10X + 10);
- if (DEBUG_DICT_FULL) {
- LOGI("Demotion rate for missing character is %d.", demotionRate);
- }
- multiplyRate(demotionRate, &finalFreq);
- } else {
- finalFreq = 0;
- }
- }
- if (transposedPos >= 0) multiplyRate(
- WORDS_WITH_TRANSPOSED_CHARACTERS_DEMOTION_RATE, &finalFreq);
- if (excessivePos >= 0) {
- multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_DEMOTION_RATE, &finalFreq);
- if (!existsAdjacentProximityChars(inputIndex, mInputLength)) {
- multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_OUT_OF_PROXIMITY_DEMOTION_RATE, &finalFreq);
- }
- }
- int lengthFreq = TYPED_LETTER_MULTIPLIER;
- multiplyIntCapped(powerIntCapped(TYPED_LETTER_MULTIPLIER, depth), &lengthFreq);
- if (lengthFreq == matchWeight) {
- // Full exact match
- if (depth > 1) {
- if (DEBUG_DICT) {
- LOGI("Found full matched word.");
- }
- multiplyRate(FULL_MATCHED_WORDS_PROMOTION_RATE, &finalFreq);
- }
- if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0) {
- finalFreq = capped255MultForFullMatchAccentsOrCapitalizationDifference(finalFreq);
- }
- } else if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0 && depth > 0) {
- // A word with proximity corrections
- if (DEBUG_DICT) {
- LOGI("Found one proximity correction.");
- }
- multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &finalFreq);
- multiplyRate(WORDS_WITH_PROXIMITY_CHARACTER_DEMOTION_RATE, &finalFreq);
- }
- if (DEBUG_DICT) {
- LOGI("calc: %d, %d", depth, sameLength);
- }
- if (sameLength) multiplyIntCapped(FULL_WORD_MULTIPLIER, &finalFreq);
- return finalFreq;
-}
-
-inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
- const int inputIndex, const int skipPos, const int depth) {
- const unsigned short userTypedChar = getInputCharsAt(inputIndex)[0];
- // Skip the ' or other letter and continue deeper
- return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth;
-}
-
-inline bool UnigramDictionary::existsAdjacentProximityChars(const int inputIndex,
- const int inputLength) const {
- if (inputIndex < 0 || inputIndex >= inputLength) return false;
- const int currentChar = *getInputCharsAt(inputIndex);
- const int leftIndex = inputIndex - 1;
- if (leftIndex >= 0) {
- const int *leftChars = getInputCharsAt(leftIndex);
- int i = 0;
- while (leftChars[i] > 0 && i < MAX_PROXIMITY_CHARS) {
- if (leftChars[i++] == currentChar) return true;
- }
- }
- const int rightIndex = inputIndex + 1;
- if (rightIndex < inputLength) {
- const int *rightChars = getInputCharsAt(rightIndex);
- int i = 0;
- while (rightChars[i] > 0 && i < MAX_PROXIMITY_CHARS) {
- if (rightChars[i++] == currentChar) return true;
- }
- }
- return false;
-}
-
-// In the following function, c is the current character of the dictionary word
-// currently examined.
-// currentChars is an array containing the keys close to the character the
-// user actually typed at the same position. We want to see if c is in it: if so,
-// then the word contains at that position a character close to what the user
-// typed.
-// What the user typed is actually the first character of the array.
-// Notice : accented characters do not have a proximity list, so they are alone
-// in their list. The non-accented version of the character should be considered
-// "close", but not the other keys close to the non-accented version.
-inline UnigramDictionary::ProximityType UnigramDictionary::getMatchedProximityId(
- const int *currentChars, const unsigned short c, const int skipPos,
- const int excessivePos, const int transposedPos) {
- const unsigned short baseLowerC = toBaseLowerCase(c);
-
- // The first char in the array is what user typed. If it matches right away,
- // that means the user typed that same char for this pos.
- if (currentChars[0] == baseLowerC || currentChars[0] == c)
- return SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR;
-
- // If one of those is true, we should not check for close characters at all.
- if (skipPos >= 0 || excessivePos >= 0 || transposedPos >= 0)
- return UNRELATED_CHAR;
-
- // If the non-accented, lowercased version of that first character matches c,
- // then we have a non-accented version of the accented character the user
- // typed. Treat it as a close char.
- if (toBaseLowerCase(currentChars[0]) == baseLowerC)
- return NEAR_PROXIMITY_CHAR;
-
- // Not an exact nor an accent-alike match: search the list of close keys
- int j = 1;
- while (currentChars[j] > 0 && j < MAX_PROXIMITY_CHARS) {
- const bool matched = (currentChars[j] == baseLowerC || currentChars[j] == c);
- if (matched) return NEAR_PROXIMITY_CHAR;
- ++j;
- }
-
- // Was not included, signal this as an unrelated character.
- return UNRELATED_CHAR;
-}
-
-inline void UnigramDictionary::onTerminal(unsigned short int* word, const int depth,
- const uint8_t* const root, const uint8_t flags, int pos,
- const int inputIndex, const int matchWeight, const int skipPos,
- const int excessivePos, const int transposedPos, const int freq, const bool sameLength,
- int* nextLetters, const int nextLettersSize) {
-
- const bool isSameAsTyped = sameLength ? sameAsTyped(word, depth + 1) : false;
- const bool hasAlternates = hasAlternateSpellings(flags);
- if (isSameAsTyped && !hasAlternates) return;
-
- if (depth >= MIN_SUGGEST_DEPTH) {
- const int finalFreq = calculateFinalFreq(inputIndex, depth, matchWeight, skipPos,
- excessivePos, transposedPos, freq, sameLength);
- if (!isSameAsTyped)
- addWord(word, depth + 1, finalFreq);
- if (hasAlternates)
- addWordAlternatesSpellings(DICT_ROOT, pos, flags, finalFreq);
- }
-
- if (sameLength && depth >= mInputLength && skipPos < 0) {
- registerNextLetter(word[mInputLength], nextLetters, nextLettersSize);
- }
-}
-
-#ifndef NEW_DICTIONARY_FORMAT
-// TODO: Don't forget to bring inline functions back to over where they are used.
-
-// The following functions will be entirely replaced with new implementations.
-void UnigramDictionary::getWordsOld(const int initialPos, const int inputLength, const int skipPos,
- const int excessivePos, const int transposedPos,int *nextLetters,
- const int nextLettersSize) {
- int initialPosition = initialPos;
- const int count = Dictionary::getCount(DICT_ROOT, &initialPosition);
- getWordsRec(count, initialPosition, 0,
- min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH),
- mInputLength <= 0, 1, 0, 0, skipPos, excessivePos, transposedPos, nextLetters,
- nextLettersSize);
-}
-
-void UnigramDictionary::getWordsRec(const int childrenCount, const int pos, const int depth,
- const int maxDepth, const bool traverseAllNodes, const int matchWeight,
- const int inputIndex, const int diffs, const int skipPos, const int excessivePos,
- const int transposedPos, int *nextLetters, const int nextLettersSize) {
- int siblingPos = pos;
- for (int i = 0; i < childrenCount; ++i) {
- int newCount;
- int newChildPosition;
- bool newTraverseAllNodes;
- int newMatchRate;
- int newInputIndex;
- int newDiffs;
- int newSiblingPos;
- int newOutputIndex;
- const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth, maxDepth,
- traverseAllNodes, matchWeight, inputIndex, diffs,
- skipPos, excessivePos, transposedPos,
- nextLetters, nextLettersSize,
- &newCount, &newChildPosition, &newTraverseAllNodes, &newMatchRate,
- &newInputIndex, &newDiffs, &newSiblingPos, &newOutputIndex);
- siblingPos = newSiblingPos;
-
- if (needsToTraverseChildrenNodes) {
- getWordsRec(newCount, newChildPosition, newOutputIndex, maxDepth, newTraverseAllNodes,
- newMatchRate, newInputIndex, newDiffs, skipPos, excessivePos, transposedPos,
- nextLetters, nextLettersSize);
- }
- }
-}
-
-inline int UnigramDictionary::getBestWordFreq(const int startInputIndex, const int inputLength,
- unsigned short *word) {
- int pos = ROOT_POS;
- int count = Dictionary::getCount(DICT_ROOT, &pos);
- int maxFreq = 0;
- int depth = 0;
- unsigned short newWord[MAX_WORD_LENGTH_INTERNAL];
- bool terminal = false;
-
- mStackChildCount[0] = count;
- mStackSiblingPos[0] = pos;
-
- while (depth >= 0) {
- if (mStackChildCount[depth] > 0) {
- --mStackChildCount[depth];
- int firstChildPos;
- int newFreq;
- int siblingPos = mStackSiblingPos[depth];
- const bool needsToTraverseChildrenNodes = processCurrentNodeForExactMatch(siblingPos,
- startInputIndex, depth, newWord, &firstChildPos, &count, &terminal, &newFreq,
- &siblingPos);
- mStackSiblingPos[depth] = siblingPos;
- if (depth == (inputLength - 1)) {
- // Traverse sibling node
- if (terminal) {
- if (newFreq > maxFreq) {
- for (int i = 0; i < inputLength; ++i) word[i] = newWord[i];
- if (DEBUG_DICT && DEBUG_NODE) {
- char s[inputLength + 1];
- for (int i = 0; i < inputLength; ++i) s[i] = word[i];
- s[inputLength] = 0;
- LOGI("New missing space word found: %d > %d (%s), %d, %d",
- newFreq, maxFreq, s, inputLength, depth);
- }
- maxFreq = newFreq;
- }
- }
- } else if (needsToTraverseChildrenNodes) {
- // Traverse children nodes
- ++depth;
- mStackChildCount[depth] = count;
- mStackSiblingPos[depth] = firstChildPos;
- }
- } else {
- // Traverse parent node
- --depth;
- }
- }
-
- word[inputLength] = 0;
- return maxFreq;
-}
-
-inline bool UnigramDictionary::processCurrentNodeForExactMatch(const int firstChildPos,
- const int startInputIndex, const int depth, unsigned short *word, int *newChildPosition,
- int *newCount, bool *newTerminal, int *newFreq, int *siblingPos) {
- const int inputIndex = startInputIndex + depth;
- const int *currentChars = getInputCharsAt(inputIndex);
- unsigned short c;
- *siblingPos = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, firstChildPos,
- &c, newChildPosition, newTerminal, newFreq);
- const unsigned int inputC = currentChars[0];
- if (DEBUG_DICT) {
- assert(inputC <= U_SHORT_MAX);
- }
- const unsigned short baseLowerC = toBaseLowerCase(c);
- const bool matched = (inputC == baseLowerC || inputC == c);
- const bool hasChild = *newChildPosition != 0;
- if (matched) {
- word[depth] = c;
- if (DEBUG_DICT && DEBUG_NODE) {
- LOGI("Node(%c, %c)<%d>, %d, %d", inputC, c, matched, hasChild, *newFreq);
- if (*newTerminal) {
- LOGI("Terminal %d", *newFreq);
- }
- }
- if (hasChild) {
- *newCount = Dictionary::getCount(DICT_ROOT, newChildPosition);
- return true;
- } else {
- return false;
- }
- } else {
- // If this node is not user typed character, this method treats this word as unmatched.
- // Thus newTerminal shouldn't be true.
- *newTerminal = false;
- return false;
- }
-}
-
-// TODO: use uint32_t instead of unsigned short
-bool UnigramDictionary::isValidWord(unsigned short *word, int length) {
- if (IS_LATEST_DICT_VERSION) {
- return (getBigramPosition(DICTIONARY_HEADER_SIZE, word, 0, length) != NOT_VALID_WORD);
- } else {
- return (getBigramPosition(0, word, 0, length) != NOT_VALID_WORD);
- }
-}
-
-
-// Require strict exact match.
-int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset,
- int length) const {
- // returns address of bigram data of that word
- // return -99 if not found
-
- int count = Dictionary::getCount(DICT_ROOT, &pos);
- unsigned short currentChar = (unsigned short) word[offset];
- for (int j = 0; j < count; j++) {
- unsigned short c = Dictionary::getChar(DICT_ROOT, &pos);
- int terminal = Dictionary::getTerminal(DICT_ROOT, &pos);
- int childPos = Dictionary::getAddress(DICT_ROOT, &pos);
- if (c == currentChar) {
- if (offset == length - 1) {
- if (terminal) {
- return (pos+1);
- }
- } else {
- if (childPos != 0) {
- int t = getBigramPosition(childPos, word, offset + 1, length);
- if (t > 0) {
- return t;
- }
- }
- }
- }
- if (terminal) {
- Dictionary::getFreq(DICT_ROOT, IS_LATEST_DICT_VERSION, &pos);
- }
- // There could be two instances of each alphabet - upper and lower case. So continue
- // looking ...
- }
- return NOT_VALID_WORD;
-}
-
-
-// The following functions will be modified.
-bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength,
- const int firstWordStartPos, const int firstWordLength, const int secondWordStartPos,
- const int secondWordLength, const bool isSpaceProximity) {
- if (inputLength >= MAX_WORD_LENGTH) return false;
- if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos
- || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength)
- return false;
- const int newWordLength = firstWordLength + secondWordLength + 1;
- // Allocating variable length array on stack
- unsigned short word[newWordLength];
- const int firstFreq = getBestWordFreq(firstWordStartPos, firstWordLength, mWord);
- if (DEBUG_DICT) {
- LOGI("First freq: %d", firstFreq);
- }
- if (firstFreq <= 0) return false;
-
- for (int i = 0; i < firstWordLength; ++i) {
- word[i] = mWord[i];
- }
-
- const int secondFreq = getBestWordFreq(secondWordStartPos, secondWordLength, mWord);
- if (DEBUG_DICT) {
- LOGI("Second freq: %d", secondFreq);
- }
- if (secondFreq <= 0) return false;
-
- word[firstWordLength] = SPACE;
- for (int i = (firstWordLength + 1); i < newWordLength; ++i) {
- word[i] = mWord[i - firstWordLength - 1];
- }
-
- int pairFreq = calcFreqForSplitTwoWords(TYPED_LETTER_MULTIPLIER, firstWordLength,
- secondWordLength, firstFreq, secondFreq, isSpaceProximity);
- if (DEBUG_DICT) {
- LOGI("Split two words: %d, %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength,
- TYPED_LETTER_MULTIPLIER);
- }
- addWord(word, newWordLength, pairFreq);
- return true;
-}
-
-inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth,
- const int maxDepth, const bool traverseAllNodes, int matchWeight, int inputIndex,
- const int diffs, const int skipPos, const int excessivePos, const int transposedPos,
- int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition,
- bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs,
- int *nextSiblingPosition, int *nextOutputIndex) {
- if (DEBUG_DICT) {
- int inputCount = 0;
- if (skipPos >= 0) ++inputCount;
- if (excessivePos >= 0) ++inputCount;
- if (transposedPos >= 0) ++inputCount;
- assert(inputCount <= 1);
- }
- unsigned short c;
- int childPosition;
- bool terminal;
- int freq;
- bool isSameAsUserTypedLength = false;
-
- const uint8_t flags = 0; // No flags for now
-
- if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;
-
- *nextSiblingPosition = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, pos,
- &c, &childPosition, &terminal, &freq);
- *nextOutputIndex = depth + 1;
-
- const bool needsToTraverseChildrenNodes = childPosition != 0;
-
- // If we are only doing traverseAllNodes, no need to look at the typed characters.
- if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
- mWord[depth] = c;
- if (traverseAllNodes && terminal) {
- onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
- excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize);
- }
- if (!needsToTraverseChildrenNodes) return false;
- *newTraverseAllNodes = traverseAllNodes;
- *newMatchRate = matchWeight;
- *newDiffs = diffs;
- *newInputIndex = inputIndex;
- } else {
- const int *currentChars = getInputCharsAt(inputIndex);
-
- if (transposedPos >= 0) {
- if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS;
- if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS;
- }
-
- int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos,
- transposedPos);
- if (UNRELATED_CHAR == matchedProximityCharId) return false;
- mWord[depth] = c;
- // If inputIndex is greater than mInputLength, that means there is no
- // proximity chars. So, we don't need to check proximity.
- if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
- multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight);
- }
- bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
- || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
- if (isSameAsUserTypedLength && terminal) {
- onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
- excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize);
- }
- if (!needsToTraverseChildrenNodes) return false;
- // Start traversing all nodes after the index exceeds the user typed length
- *newTraverseAllNodes = isSameAsUserTypedLength;
- *newMatchRate = matchWeight;
- *newDiffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
- *newInputIndex = inputIndex + 1;
- }
- // Optimization: Prune out words that are too long compared to how much was typed.
- if (depth >= maxDepth || *newDiffs > mMaxEditDistance) {
- return false;
- }
-
- // If inputIndex is greater than mInputLength, that means there are no proximity chars.
- // TODO: Check if this can be isSameAsUserTypedLength only.
- if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) {
- *newTraverseAllNodes = true;
- }
- // get the count of nodes and increment childAddress.
- *newCount = Dictionary::getCount(DICT_ROOT, &childPosition);
- *newChildPosition = childPosition;
- if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
- return needsToTraverseChildrenNodes;
-}
-
-#else // NEW_DICTIONARY_FORMAT
-
-bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength,
- const int firstWordStartPos, const int firstWordLength, const int secondWordStartPos,
- const int secondWordLength, const bool isSpaceProximity) {
- if (inputLength >= MAX_WORD_LENGTH) return false;
- if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos
- || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength)
- return false;
- const int newWordLength = firstWordLength + secondWordLength + 1;
- // Allocating variable length array on stack
- unsigned short word[newWordLength];
- const int firstFreq = getBestWordFreq(firstWordStartPos, firstWordLength, mWord);
- if (DEBUG_DICT) {
- LOGI("First freq: %d", firstFreq);
- }
- if (firstFreq <= 0) return false;
-
- for (int i = 0; i < firstWordLength; ++i) {
- word[i] = mWord[i];
- }
-
- const int secondFreq = getBestWordFreq(secondWordStartPos, secondWordLength, mWord);
- if (DEBUG_DICT) {
- LOGI("Second freq: %d", secondFreq);
- }
- if (secondFreq <= 0) return false;
-
- word[firstWordLength] = SPACE;
- for (int i = (firstWordLength + 1); i < newWordLength; ++i) {
- word[i] = mWord[i - firstWordLength - 1];
- }
-
- int pairFreq = calcFreqForSplitTwoWords(TYPED_LETTER_MULTIPLIER, firstWordLength,
- secondWordLength, firstFreq, secondFreq, isSpaceProximity);
- if (DEBUG_DICT) {
- LOGI("Split two words: %d, %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength,
- TYPED_LETTER_MULTIPLIER);
- }
- addWord(word, newWordLength, pairFreq);
- return true;
-}
-
-inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth,
- const int maxDepth, const bool traverseAllNodes, int matchWeight, int inputIndex,
- const int diffs, const int skipPos, const int excessivePos, const int transposedPos,
- int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition,
- bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs,
- int *nextSiblingPosition, int *nextOutputIndex) {
- if (DEBUG_DICT) {
- int inputCount = 0;
- if (skipPos >= 0) ++inputCount;
- if (excessivePos >= 0) ++inputCount;
- if (transposedPos >= 0) ++inputCount;
- assert(inputCount <= 1);
- }
- unsigned short c;
- int childPosition;
- bool terminal;
- int freq;
- bool isSameAsUserTypedLength = false;
-
- const uint8_t flags = 0; // No flags for now
-
- if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;
-
- *nextSiblingPosition = Dictionary::setDictionaryValues(DICT_ROOT, IS_LATEST_DICT_VERSION, pos,
- &c, &childPosition, &terminal, &freq);
- *nextOutputIndex = depth + 1;
-
- const bool needsToTraverseChildrenNodes = childPosition != 0;
-
- // If we are only doing traverseAllNodes, no need to look at the typed characters.
- if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
- mWord[depth] = c;
- if (traverseAllNodes && terminal) {
- onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
- excessivePos, transposedPos, freq, false, nextLetters, nextLettersSize);
- }
- if (!needsToTraverseChildrenNodes) return false;
- *newTraverseAllNodes = traverseAllNodes;
- *newMatchRate = matchWeight;
- *newDiffs = diffs;
- *newInputIndex = inputIndex;
- } else {
- const int *currentChars = getInputCharsAt(inputIndex);
-
- if (transposedPos >= 0) {
- if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS;
- if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS;
- }
-
- int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos,
- transposedPos);
- if (UNRELATED_CHAR == matchedProximityCharId) return false;
- mWord[depth] = c;
- // If inputIndex is greater than mInputLength, that means there is no
- // proximity chars. So, we don't need to check proximity.
- if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
- multiplyIntCapped(TYPED_LETTER_MULTIPLIER, &matchWeight);
- }
- bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
- || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
- if (isSameAsUserTypedLength && terminal) {
- onTerminal(mWord, depth, DICT_ROOT, flags, pos, inputIndex, matchWeight, skipPos,
- excessivePos, transposedPos, freq, true, nextLetters, nextLettersSize);
- }
- if (!needsToTraverseChildrenNodes) return false;
- // Start traversing all nodes after the index exceeds the user typed length
- *newTraverseAllNodes = isSameAsUserTypedLength;
- *newMatchRate = matchWeight;
- *newDiffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
- *newInputIndex = inputIndex + 1;
- }
- // Optimization: Prune out words that are too long compared to how much was typed.
- if (depth >= maxDepth || *newDiffs > mMaxEditDistance) {
- return false;
- }
-
- // If inputIndex is greater than mInputLength, that means there are no proximity chars.
- // TODO: Check if this can be isSameAsUserTypedLength only.
- if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) {
- *newTraverseAllNodes = true;
- }
- // get the count of nodes and increment childAddress.
- *newCount = Dictionary::getCount(DICT_ROOT, &childPosition);
- *newChildPosition = childPosition;
- if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
- return needsToTraverseChildrenNodes;
-}
-
-#endif // NEW_DICTIONARY_FORMAT
-
-} // namespace latinime