aboutsummaryrefslogtreecommitdiffstats
path: root/native/src/unigram_dictionary.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'native/src/unigram_dictionary.cpp')
-rw-r--r--native/src/unigram_dictionary.cpp894
1 files changed, 0 insertions, 894 deletions
diff --git a/native/src/unigram_dictionary.cpp b/native/src/unigram_dictionary.cpp
deleted file mode 100644
index ed4c066f3..000000000
--- a/native/src/unigram_dictionary.cpp
+++ /dev/null
@@ -1,894 +0,0 @@
-/*
-**
-** Copyright 2010, The Android Open Source Project
-**
-** Licensed under the Apache License, Version 2.0 (the "License");
-** you may not use this file except in compliance with the License.
-** You may obtain a copy of the License at
-**
-** http://www.apache.org/licenses/LICENSE-2.0
-**
-** Unless required by applicable law or agreed to in writing, software
-** distributed under the License is distributed on an "AS IS" BASIS,
-** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-** See the License for the specific language governing permissions and
-** limitations under the License.
-*/
-
-#include <assert.h>
-#include <string.h>
-
-#define LOG_TAG "LatinIME: unigram_dictionary.cpp"
-
-#include "char_utils.h"
-#include "dictionary.h"
-#include "unigram_dictionary.h"
-
-#include "binary_format.h"
-#include "terminal_attributes.h"
-
-namespace latinime {
-
-const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
- { { 'a', 'e', 0x00E4 }, // U+00E4 : LATIN SMALL LETTER A WITH DIAERESIS
- { 'o', 'e', 0x00F6 }, // U+00F6 : LATIN SMALL LETTER O WITH DIAERESIS
- { 'u', 'e', 0x00FC } }; // U+00FC : LATIN SMALL LETTER U WITH DIAERESIS
-
-const UnigramDictionary::digraph_t UnigramDictionary::FRENCH_LIGATURES_DIGRAPHS[] =
- { { 'a', 'e', 0x00E6 }, // U+00E6 : LATIN SMALL LETTER AE
- { 'o', 'e', 0x0153 } }; // U+0153 : LATIN SMALL LIGATURE OE
-
-// TODO: check the header
-UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier,
- int fullWordMultiplier, int maxWordLength, int maxWords,
- const bool isLatestDictVersion)
- : DICT_ROOT(streamStart), MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
- IS_LATEST_DICT_VERSION(isLatestDictVersion),
- TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
- // TODO : remove this variable.
- ROOT_POS(0),
- BYTES_IN_ONE_CHAR(sizeof(int)),
- MAX_DIGRAPH_SEARCH_DEPTH(DEFAULT_MAX_DIGRAPH_SEARCH_DEPTH) {
- if (DEBUG_DICT) {
- AKLOGI("UnigramDictionary - constructor");
- }
-}
-
-UnigramDictionary::~UnigramDictionary() {
-}
-
-static inline unsigned int getCodesBufferSize(const int *codes, const int codesSize) {
- return sizeof(*codes) * codesSize;
-}
-
-// TODO: This needs to take a const unsigned short* and not tinker with its contents
-static inline void addWord(
- unsigned short *word, int length, int frequency, WordsPriorityQueue *queue) {
- queue->push(frequency, word, length);
-}
-
-// Return the replacement code point for a digraph, or 0 if none.
-int UnigramDictionary::getDigraphReplacement(const int *codes, const int i, const int codesSize,
- const digraph_t* const digraphs, const unsigned int digraphsSize) const {
-
- // There can't be a digraph if we don't have at least 2 characters to examine
- if (i + 2 > codesSize) return false;
-
- // Search for the first char of some digraph
- int lastDigraphIndex = -1;
- const int thisChar = codes[i];
- for (lastDigraphIndex = digraphsSize - 1; lastDigraphIndex >= 0; --lastDigraphIndex) {
- if (thisChar == digraphs[lastDigraphIndex].first) break;
- }
- // No match: return early
- if (lastDigraphIndex < 0) return 0;
-
- // It's an interesting digraph if the second char matches too.
- if (digraphs[lastDigraphIndex].second == codes[i + 1]) {
- return digraphs[lastDigraphIndex].replacement;
- } else {
- return 0;
- }
-}
-
-// Mostly the same arguments as the non-recursive version, except:
-// codes is the original value. It points to the start of the work buffer, and gets passed as is.
-// codesSize is the size of the user input (thus, it is the size of codesSrc).
-// codesDest is the current point in the work buffer.
-// codesSrc is the current point in the user-input, original, content-unmodified buffer.
-// codesRemain is the remaining size in codesSrc.
-void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo,
- const int *xcoordinates, const int *ycoordinates, const int *codesBuffer,
- int *xCoordinatesBuffer, int *yCoordinatesBuffer,
- const int codesBufferSize, const int flags, const int *codesSrc,
- const int codesRemain, const int currentDepth, int *codesDest, Correction *correction,
- WordsPriorityQueuePool *queuePool,
- const digraph_t* const digraphs, const unsigned int digraphsSize) {
-
- const int startIndex = codesDest - codesBuffer;
- if (currentDepth < MAX_DIGRAPH_SEARCH_DEPTH) {
- for (int i = 0; i < codesRemain; ++i) {
- xCoordinatesBuffer[startIndex + i] = xcoordinates[codesBufferSize - codesRemain + i];
- yCoordinatesBuffer[startIndex + i] = ycoordinates[codesBufferSize - codesRemain + i];
- const int replacementCodePoint =
- getDigraphReplacement(codesSrc, i, codesRemain, digraphs, digraphsSize);
- if (0 != replacementCodePoint) {
- // Found a digraph. We will try both spellings. eg. the word is "pruefen"
-
- // Copy the word up to the first char of the digraph, including proximity chars,
- // and overwrite the primary code with the replacement code point. Then, continue
- // processing on the remaining part of the word, skipping the second char of the
- // digraph.
- // In our example, copy "pru", replace "u" with the version with the diaeresis and
- // continue running on "fen".
- // Make i the index of the second char of the digraph for simplicity. Forgetting
- // to do that results in an infinite recursion so take care!
- ++i;
- memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR);
- codesDest[(i - 1) * (BYTES_IN_ONE_CHAR / sizeof(codesDest[0]))] =
- replacementCodePoint;
- getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
- codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize, flags,
- codesSrc + i + 1, codesRemain - i - 1,
- currentDepth + 1, codesDest + i, correction,
- queuePool, digraphs, digraphsSize);
-
- // Copy the second char of the digraph in place, then continue processing on
- // the remaining part of the word.
- // In our example, after "pru" in the buffer copy the "e", and continue on "fen"
- memcpy(codesDest + i, codesSrc + i, BYTES_IN_ONE_CHAR);
- getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
- codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize, flags,
- codesSrc + i, codesRemain - i, currentDepth + 1,
- codesDest + i, correction, queuePool,
- digraphs, digraphsSize);
- return;
- }
- }
- }
-
- // If we come here, we hit the end of the word: let's check it against the dictionary.
- // In our example, we'll come here once for "prufen" and then once for "pruefen".
- // If the word contains several digraphs, we'll come it for the product of them.
- // eg. if the word is "ueberpruefen" we'll test, in order, against
- // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen".
- const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain;
- if (0 != remainingBytes) {
- memcpy(codesDest, codesSrc, remainingBytes);
- memcpy(&xCoordinatesBuffer[startIndex], &xcoordinates[codesBufferSize - codesRemain],
- sizeof(int) * codesRemain);
- memcpy(&yCoordinatesBuffer[startIndex], &ycoordinates[codesBufferSize - codesRemain],
- sizeof(int) * codesRemain);
- }
-
- getWordSuggestions(proximityInfo, xCoordinatesBuffer, yCoordinatesBuffer, codesBuffer,
- startIndex + codesRemain, flags, correction,
- queuePool);
-}
-
-int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo,
- WordsPriorityQueuePool *queuePool, Correction *correction, const int *xcoordinates,
- const int *ycoordinates, const int *codes, const int codesSize, const int flags,
- unsigned short *outWords, int *frequencies) {
-
- queuePool->clearAll();
- Correction* masterCorrection = correction;
- if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags)
- { // Incrementally tune the word and try all possibilities
- int codesBuffer[getCodesBufferSize(codes, codesSize)];
- int xCoordinatesBuffer[codesSize];
- int yCoordinatesBuffer[codesSize];
- getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
- xCoordinatesBuffer, yCoordinatesBuffer,
- codesSize, flags, codes, codesSize, 0, codesBuffer, masterCorrection, queuePool,
- GERMAN_UMLAUT_DIGRAPHS,
- sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]));
- } else if (REQUIRES_FRENCH_LIGATURES_PROCESSING & flags) {
- int codesBuffer[getCodesBufferSize(codes, codesSize)];
- int xCoordinatesBuffer[codesSize];
- int yCoordinatesBuffer[codesSize];
- getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
- xCoordinatesBuffer, yCoordinatesBuffer,
- codesSize, flags, codes, codesSize, 0, codesBuffer, masterCorrection, queuePool,
- FRENCH_LIGATURES_DIGRAPHS,
- sizeof(FRENCH_LIGATURES_DIGRAPHS) / sizeof(FRENCH_LIGATURES_DIGRAPHS[0]));
- } else { // Normal processing
- getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize, flags,
- masterCorrection, queuePool);
- }
-
- PROF_START(20);
- if (DEBUG_DICT) {
- double ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
- proximityInfo->getPrimaryInputWord(), codesSize, 0, 0, 0);
- ns += 0;
- AKLOGI("Max normalized score = %f", ns);
- }
- const int suggestedWordsCount =
- queuePool->getMasterQueue()->outputSuggestions(frequencies, outWords);
-
- if (DEBUG_DICT) {
- double ns = queuePool->getMasterQueue()->getHighestNormalizedScore(
- proximityInfo->getPrimaryInputWord(), codesSize, 0, 0, 0);
- ns += 0;
- AKLOGI("Returning %d words", suggestedWordsCount);
- /// Print the returned words
- for (int j = 0; j < suggestedWordsCount; ++j) {
- short unsigned int* w = outWords + j * MAX_WORD_LENGTH;
- char s[MAX_WORD_LENGTH];
- for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i];
- AKLOGI("%s %i", s, frequencies[j]);
- }
- }
- PROF_END(20);
- PROF_CLOSE;
- return suggestedWordsCount;
-}
-
-void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo,
- const int *xcoordinates, const int *ycoordinates, const int *codes,
- const int inputLength, const int flags, Correction *correction,
- WordsPriorityQueuePool *queuePool) {
-
- PROF_OPEN;
- PROF_START(0);
- PROF_END(0);
-
- PROF_START(1);
- const bool useFullEditDistance = USE_FULL_EDIT_DISTANCE & flags;
- getOneWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, useFullEditDistance,
- inputLength, correction, queuePool);
- PROF_END(1);
-
- PROF_START(2);
- // Note: This line is intentionally left blank
- PROF_END(2);
-
- PROF_START(3);
- // Note: This line is intentionally left blank
- PROF_END(3);
-
- PROF_START(4);
- bool hasAutoCorrectionCandidate = false;
- WordsPriorityQueue* masterQueue = queuePool->getMasterQueue();
- if (masterQueue->size() > 0) {
- double nsForMaster = masterQueue->getHighestNormalizedScore(
- proximityInfo->getPrimaryInputWord(), inputLength, 0, 0, 0);
- hasAutoCorrectionCandidate = (nsForMaster > START_TWO_WORDS_CORRECTION_THRESHOLD);
- }
- PROF_END(4);
-
- PROF_START(5);
- // Multiple word suggestions
- if (SUGGEST_MULTIPLE_WORDS
- && inputLength >= MIN_USER_TYPED_LENGTH_FOR_MULTIPLE_WORD_SUGGESTION) {
- getSplitMultipleWordsSuggestions(proximityInfo, xcoordinates, ycoordinates, codes,
- useFullEditDistance, inputLength, correction, queuePool,
- hasAutoCorrectionCandidate);
- }
- PROF_END(5);
-
- PROF_START(6);
- // Note: This line is intentionally left blank
- PROF_END(6);
-
- if (DEBUG_DICT) {
- queuePool->dumpSubQueue1TopSuggestions();
- for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) {
- WordsPriorityQueue* queue = queuePool->getSubQueue(FIRST_WORD_INDEX, i);
- if (queue->size() > 0) {
- WordsPriorityQueue::SuggestedWord* sw = queue->top();
- const int score = sw->mScore;
- const unsigned short* word = sw->mWord;
- const int wordLength = sw->mWordLength;
- double ns = Correction::RankingAlgorithm::calcNormalizedScore(
- proximityInfo->getPrimaryInputWord(), i, word, wordLength, score);
- ns += 0;
- AKLOGI("--- TOP SUB WORDS for %d --- %d %f [%d]", i, score, ns,
- (ns > TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD));
- DUMP_WORD(proximityInfo->getPrimaryInputWord(), i);
- DUMP_WORD(word, wordLength);
- }
- }
- }
-}
-
-void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xCoordinates,
- const int *yCoordinates, const int *codes, const int inputLength, Correction *correction) {
- if (DEBUG_DICT) {
- AKLOGI("initSuggest");
- }
- proximityInfo->setInputParams(codes, inputLength, xCoordinates, yCoordinates);
- const int maxDepth = min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
- correction->initCorrection(proximityInfo, inputLength, maxDepth);
-}
-
-static const char QUOTE = '\'';
-static const char SPACE = ' ';
-
-void UnigramDictionary::getOneWordSuggestions(ProximityInfo *proximityInfo,
- const int *xcoordinates, const int *ycoordinates, const int *codes,
- const bool useFullEditDistance, const int inputLength, Correction *correction,
- WordsPriorityQueuePool *queuePool) {
- initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, inputLength, correction);
- getSuggestionCandidates(useFullEditDistance, inputLength, correction, queuePool,
- true /* doAutoCompletion */, DEFAULT_MAX_ERRORS, FIRST_WORD_INDEX);
-}
-
-void UnigramDictionary::getSuggestionCandidates(const bool useFullEditDistance,
- const int inputLength, Correction *correction, WordsPriorityQueuePool *queuePool,
- const bool doAutoCompletion, const int maxErrors, const int currentWordIndex) {
- // TODO: Remove setCorrectionParams
- correction->setCorrectionParams(0, 0, 0,
- -1 /* spaceProximityPos */, -1 /* missingSpacePos */, useFullEditDistance,
- doAutoCompletion, maxErrors);
- int rootPosition = ROOT_POS;
- // Get the number of children of root, then increment the position
- int childCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &rootPosition);
- int outputIndex = 0;
-
- correction->initCorrectionState(rootPosition, childCount, (inputLength <= 0));
-
- // Depth first search
- while (outputIndex >= 0) {
- if (correction->initProcessState(outputIndex)) {
- int siblingPos = correction->getTreeSiblingPos(outputIndex);
- int firstChildPos;
-
- const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos,
- correction, &childCount, &firstChildPos, &siblingPos, queuePool,
- currentWordIndex);
- // Update next sibling pos
- correction->setTreeSiblingPos(outputIndex, siblingPos);
-
- if (needsToTraverseChildrenNodes) {
- // Goes to child node
- outputIndex = correction->goDownTree(outputIndex, childCount, firstChildPos);
- }
- } else {
- // Goes to parent sibling node
- outputIndex = correction->getTreeParentIndex(outputIndex);
- }
- }
-}
-
-inline void UnigramDictionary::onTerminal(const int freq,
- const TerminalAttributes& terminalAttributes, Correction *correction,
- WordsPriorityQueuePool *queuePool, const bool addToMasterQueue,
- const int currentWordIndex) {
- const int inputIndex = correction->getInputIndex();
- const bool addToSubQueue = inputIndex < SUB_QUEUE_MAX_COUNT;
-
- int wordLength;
- unsigned short* wordPointer;
-
- if ((currentWordIndex == FIRST_WORD_INDEX) && addToMasterQueue) {
- WordsPriorityQueue *masterQueue = queuePool->getMasterQueue();
- const int finalFreq = correction->getFinalFreq(freq, &wordPointer, &wordLength);
- if (finalFreq != NOT_A_FREQUENCY) {
- if (!terminalAttributes.isShortcutOnly()) {
- addWord(wordPointer, wordLength, finalFreq, masterQueue);
- }
-
- // Please note that the shortcut candidates will be added to the master queue only.
- TerminalAttributes::ShortcutIterator iterator =
- terminalAttributes.getShortcutIterator();
- while (iterator.hasNextShortcutTarget()) {
- // TODO: addWord only supports weak ordering, meaning we have no means
- // to control the order of the shortcuts relative to one another or to the word.
- // We need to either modulate the frequency of each shortcut according
- // to its own shortcut frequency or to make the queue
- // so that the insert order is protected inside the queue for words
- // with the same score.
- uint16_t shortcutTarget[MAX_WORD_LENGTH_INTERNAL];
- const int shortcutTargetStringLength = iterator.getNextShortcutTarget(
- MAX_WORD_LENGTH_INTERNAL, shortcutTarget);
- addWord(shortcutTarget, shortcutTargetStringLength, finalFreq, masterQueue);
- }
- }
- }
-
- // We only allow two words + other error correction for words with SUB_QUEUE_MIN_WORD_LENGTH
- // or more length.
- if (inputIndex >= SUB_QUEUE_MIN_WORD_LENGTH && addToSubQueue) {
- WordsPriorityQueue *subQueue;
- subQueue = queuePool->getSubQueue(currentWordIndex, inputIndex);
- if (!subQueue) {
- return;
- }
- const int finalFreq = correction->getFinalFreqForSubQueue(freq, &wordPointer, &wordLength,
- inputIndex);
- addWord(wordPointer, wordLength, finalFreq, subQueue);
- }
-}
-
-bool UnigramDictionary::getSubStringSuggestion(
- ProximityInfo *proximityInfo, const int *xcoordinates, const int *ycoordinates,
- const int *codes, const bool useFullEditDistance, Correction *correction,
- WordsPriorityQueuePool* queuePool, const int inputLength,
- const bool hasAutoCorrectionCandidate, const int currentWordIndex,
- const int inputWordStartPos, const int inputWordLength,
- const int outputWordStartPos, const bool isSpaceProximity, int *freqArray,
- int*wordLengthArray, unsigned short* outputWord, int *outputWordLength) {
- unsigned short* tempOutputWord = 0;
- int nextWordLength = 0;
- // TODO: Optimize init suggestion
- initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes,
- inputLength, correction);
-
- int freq = getMostFrequentWordLike(
- inputWordStartPos, inputWordLength, proximityInfo, mWord);
- if (freq > 0) {
- nextWordLength = inputWordLength;
- tempOutputWord = mWord;
- } else if (!hasAutoCorrectionCandidate) {
- if (inputWordStartPos > 0) {
- const int offset = inputWordStartPos;
- initSuggestions(proximityInfo, &xcoordinates[offset], &ycoordinates[offset],
- codes + offset, inputWordLength, correction);
- queuePool->clearSubQueue(currentWordIndex);
- getSuggestionCandidates(useFullEditDistance, inputWordLength, correction,
- queuePool, false, MAX_ERRORS_FOR_TWO_WORDS, currentWordIndex);
- if (DEBUG_DICT) {
- if (currentWordIndex < MULTIPLE_WORDS_SUGGESTION_MAX_WORDS) {
- AKLOGI("Dump word candidates(%d) %d", currentWordIndex, inputWordLength);
- for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) {
- queuePool->getSubQueue(currentWordIndex, i)->dumpTopWord();
- }
- }
- }
- }
- WordsPriorityQueue* queue = queuePool->getSubQueue(currentWordIndex, inputWordLength);
- if (!queue || queue->size() < 1) {
- return false;
- }
- int score = 0;
- const double ns = queue->getHighestNormalizedScore(
- proximityInfo->getPrimaryInputWord(), inputWordLength,
- &tempOutputWord, &score, &nextWordLength);
- if (DEBUG_DICT) {
- AKLOGI("NS(%d) = %f, Score = %d", currentWordIndex, ns, score);
- }
- // Two words correction won't be done if the score of the first word doesn't exceed the
- // threshold.
- if (ns < TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD
- || nextWordLength < SUB_QUEUE_MIN_WORD_LENGTH) {
- return false;
- }
- freq = score >> (nextWordLength + TWO_WORDS_PLUS_OTHER_ERROR_CORRECTION_DEMOTION_DIVIDER);
- }
- if (DEBUG_DICT) {
- AKLOGI("Freq(%d): %d, length: %d, input length: %d, input start: %d (%d)"
- , currentWordIndex, freq, nextWordLength, inputWordLength, inputWordStartPos,
- wordLengthArray[0]);
- }
- if (freq <= 0 || nextWordLength <= 0
- || MAX_WORD_LENGTH <= (outputWordStartPos + nextWordLength)) {
- return false;
- }
- for (int i = 0; i < nextWordLength; ++i) {
- outputWord[outputWordStartPos + i] = tempOutputWord[i];
- }
-
- // Put output values
- freqArray[currentWordIndex] = freq;
- // TODO: put output length instead of input length
- wordLengthArray[currentWordIndex] = inputWordLength;
- const int tempOutputWordLength = outputWordStartPos + nextWordLength;
- if (outputWordLength) {
- *outputWordLength = tempOutputWordLength;
- }
-
- if ((inputWordStartPos + inputWordLength) < inputLength) {
- if (outputWordStartPos + nextWordLength >= MAX_WORD_LENGTH) {
- return false;
- }
- outputWord[tempOutputWordLength] = SPACE;
- if (outputWordLength) {
- ++*outputWordLength;
- }
- } else if (currentWordIndex >= 1) {
- // TODO: Handle 3 or more words
- const int pairFreq = correction->getFreqForSplitMultipleWords(
- freqArray, wordLengthArray, currentWordIndex + 1, isSpaceProximity, outputWord);
- if (DEBUG_DICT) {
- DUMP_WORD(outputWord, tempOutputWordLength);
- AKLOGI("Split two words: %d, %d, %d, %d, (%d) %d", freqArray[0], freqArray[1], pairFreq,
- inputLength, wordLengthArray[0], tempOutputWordLength);
- }
- addWord(outputWord, tempOutputWordLength, pairFreq, queuePool->getMasterQueue());
- }
- return true;
-}
-
-void UnigramDictionary::getMultiWordsSuggestionRec(ProximityInfo *proximityInfo,
- const int *xcoordinates, const int *ycoordinates, const int *codes,
- const bool useFullEditDistance, const int inputLength,
- Correction *correction, WordsPriorityQueuePool* queuePool,
- const bool hasAutoCorrectionCandidate, const int startInputPos, const int startWordIndex,
- const int outputWordLength, int *freqArray, int* wordLengthArray,
- unsigned short* outputWord) {
- if (startWordIndex >= (MULTIPLE_WORDS_SUGGESTION_MAX_WORDS - 1)) {
- // Return if the last word index
- return;
- }
- if (startWordIndex >= 1
- && (hasAutoCorrectionCandidate
- || inputLength < MIN_INPUT_LENGTH_FOR_THREE_OR_MORE_WORDS_CORRECTION)) {
- // Do not suggest 3+ words if already has auto correction candidate
- return;
- }
- for (int i = startInputPos + 1; i < inputLength; ++i) {
- if (DEBUG_CORRECTION_FREQ) {
- AKLOGI("Multi words(%d), start in %d sep %d start out %d",
- startWordIndex, startInputPos, i, outputWordLength);
- DUMP_WORD(outputWord, outputWordLength);
- }
- int tempOutputWordLength = 0;
- // Current word
- int inputWordStartPos = startInputPos;
- int inputWordLength = i - startInputPos;
- if (!getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes,
- useFullEditDistance, correction, queuePool, inputLength, hasAutoCorrectionCandidate,
- startWordIndex, inputWordStartPos, inputWordLength, outputWordLength,
- true /* not used */, freqArray, wordLengthArray, outputWord,
- &tempOutputWordLength)) {
- continue;
- }
-
- if (DEBUG_CORRECTION_FREQ) {
- AKLOGI("Do missing space correction");
- }
- // Next word
- // Missing space
- inputWordStartPos = i;
- inputWordLength = inputLength - i;
- if(!getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes,
- useFullEditDistance, correction, queuePool, inputLength, hasAutoCorrectionCandidate,
- startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength,
- false /* missing space */, freqArray, wordLengthArray, outputWord, 0)) {
- getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes,
- useFullEditDistance, inputLength, correction, queuePool,
- hasAutoCorrectionCandidate, inputWordStartPos, startWordIndex + 1,
- tempOutputWordLength, freqArray, wordLengthArray, outputWord);
- }
-
- // Mistyped space
- ++inputWordStartPos;
- --inputWordLength;
-
- if (inputWordLength <= 0) {
- continue;
- }
-
- const int x = xcoordinates[inputWordStartPos - 1];
- const int y = ycoordinates[inputWordStartPos - 1];
- if (!proximityInfo->hasSpaceProximity(x, y)) {
- continue;
- }
-
- if (DEBUG_CORRECTION_FREQ) {
- AKLOGI("Do mistyped space correction");
- }
- getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes,
- useFullEditDistance, correction, queuePool, inputLength, hasAutoCorrectionCandidate,
- startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength,
- true /* mistyped space */, freqArray, wordLengthArray, outputWord, 0);
- }
-}
-
-void UnigramDictionary::getSplitMultipleWordsSuggestions(ProximityInfo *proximityInfo,
- const int *xcoordinates, const int *ycoordinates, const int *codes,
- const bool useFullEditDistance, const int inputLength,
- Correction *correction, WordsPriorityQueuePool* queuePool,
- const bool hasAutoCorrectionCandidate) {
- if (inputLength >= MAX_WORD_LENGTH) return;
- if (DEBUG_DICT) {
- AKLOGI("--- Suggest multiple words");
- }
-
- // Allocating fixed length array on stack
- unsigned short outputWord[MAX_WORD_LENGTH];
- int freqArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS];
- int wordLengthArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS];
- const int outputWordLength = 0;
- const int startInputPos = 0;
- const int startWordIndex = 0;
- getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes,
- useFullEditDistance, inputLength, correction, queuePool, hasAutoCorrectionCandidate,
- startInputPos, startWordIndex, outputWordLength, freqArray, wordLengthArray,
- outputWord);
-}
-
-// Wrapper for getMostFrequentWordLikeInner, which matches it to the previous
-// interface.
-inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex,
- const int inputLength, ProximityInfo *proximityInfo, unsigned short *word) {
- uint16_t inWord[inputLength];
-
- for (int i = 0; i < inputLength; ++i) {
- inWord[i] = (uint16_t)proximityInfo->getPrimaryCharAt(startInputIndex + i);
- }
- return getMostFrequentWordLikeInner(inWord, inputLength, word);
-}
-
-// This function will take the position of a character array within a CharGroup,
-// and check it actually like-matches the word in inWord starting at startInputIndex,
-// that is, it matches it with case and accents squashed.
-// The function returns true if there was a full match, false otherwise.
-// The function will copy on-the-fly the characters in the CharGroup to outNewWord.
-// It will also place the end position of the array in outPos; in outInputIndex,
-// it will place the index of the first char AFTER the match if there was a match,
-// and the initial position if there was not. It makes sense because if there was
-// a match we want to continue searching, but if there was not, we want to go to
-// the next CharGroup.
-// In and out parameters may point to the same location. This function takes care
-// not to use any input parameters after it wrote into its outputs.
-static inline bool testCharGroupForContinuedLikeness(const uint8_t flags,
- const uint8_t* const root, const int startPos,
- const uint16_t* const inWord, const int startInputIndex,
- int32_t* outNewWord, int* outInputIndex, int* outPos) {
- const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags));
- int pos = startPos;
- int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
- int32_t baseChar = toBaseLowerCase(character);
- const uint16_t wChar = toBaseLowerCase(inWord[startInputIndex]);
-
- if (baseChar != wChar) {
- *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos;
- *outInputIndex = startInputIndex;
- return false;
- }
- int inputIndex = startInputIndex;
- outNewWord[inputIndex] = character;
- if (hasMultipleChars) {
- character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
- while (NOT_A_CHARACTER != character) {
- baseChar = toBaseLowerCase(character);
- if (toBaseLowerCase(inWord[++inputIndex]) != baseChar) {
- *outPos = BinaryFormat::skipOtherCharacters(root, pos);
- *outInputIndex = startInputIndex;
- return false;
- }
- outNewWord[inputIndex] = character;
- character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos);
- }
- }
- *outInputIndex = inputIndex + 1;
- *outPos = pos;
- return true;
-}
-
-// This function is invoked when a word like the word searched for is found.
-// It will compare the frequency to the max frequency, and if greater, will
-// copy the word into the output buffer. In output value maxFreq, it will
-// write the new maximum frequency if it changed.
-static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length,
- short unsigned int* outWord, int* maxFreq) {
- if (freq > *maxFreq) {
- for (int q = 0; q < length; ++q)
- outWord[q] = newWord[q];
- outWord[length] = 0;
- *maxFreq = freq;
- }
-}
-
-// Will find the highest frequency of the words like the one passed as an argument,
-// that is, everything that only differs by case/accents.
-int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord,
- const int length, short unsigned int* outWord) {
- int32_t newWord[MAX_WORD_LENGTH_INTERNAL];
- int depth = 0;
- int maxFreq = -1;
- const uint8_t* const root = DICT_ROOT;
-
- int startPos = 0;
- mStackChildCount[0] = BinaryFormat::getGroupCountAndForwardPointer(root, &startPos);
- mStackInputIndex[0] = 0;
- mStackSiblingPos[0] = startPos;
- while (depth >= 0) {
- const int charGroupCount = mStackChildCount[depth];
- int pos = mStackSiblingPos[depth];
- for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) {
- int inputIndex = mStackInputIndex[depth];
- const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
- // Test whether all chars in this group match with the word we are searching for. If so,
- // we want to traverse its children (or if the length match, evaluate its frequency).
- // Note that this function will output the position regardless, but will only write
- // into inputIndex if there is a match.
- const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord,
- inputIndex, newWord, &inputIndex, &pos);
- if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) {
- const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos);
- onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq);
- }
- pos = BinaryFormat::skipFrequency(flags, pos);
- const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
- const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos);
- // If we had a match and the word has children, we want to traverse them. We don't have
- // to traverse words longer than the one we are searching for, since they will not match
- // anyway, so don't traverse unless inputIndex < length.
- if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) {
- // Save position for this depth, to get back to this once children are done
- mStackChildCount[depth] = charGroupIndex;
- mStackSiblingPos[depth] = siblingPos;
- // Prepare stack values for next depth
- ++depth;
- int childrenPos = childrenNodePos;
- mStackChildCount[depth] =
- BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos);
- mStackSiblingPos[depth] = childrenPos;
- mStackInputIndex[depth] = inputIndex;
- pos = childrenPos;
- // Go to the next depth level.
- ++depth;
- break;
- } else {
- // No match, or no children, or word too long to ever match: go the next sibling.
- pos = siblingPos;
- }
- }
- --depth;
- }
- return maxFreq;
-}
-
-bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const {
- return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length);
-}
-
-// TODO: remove this function.
-int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset,
- int length) const {
- return -1;
-}
-
-// ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not.
-// If the return value is false, then the caller should read in the output "nextSiblingPosition"
-// to find out the address of the next sibling node and pass it to a new call of processCurrentNode.
-// It is worthy to note that when false is returned, the output values other than
-// nextSiblingPosition are undefined.
-// If the return value is true, then the caller must proceed to traverse the children of this
-// node. processCurrentNode will output the information about the children: their count in
-// newCount, their position in newChildrenPosition, the traverseAllNodes flag in
-// newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the
-// diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into
-// newOutputIndex. Please also note the following caveat: processCurrentNode does not know when
-// there aren't any more nodes at this level, it merely returns the address of the first byte after
-// the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any
-// given level, as output into newCount when traversing this level's parent.
-inline bool UnigramDictionary::processCurrentNode(const int initialPos,
- Correction *correction, int *newCount,
- int *newChildrenPosition, int *nextSiblingPosition, WordsPriorityQueuePool *queuePool,
- const int currentWordIndex) {
- if (DEBUG_DICT) {
- correction->checkState();
- }
- int pos = initialPos;
-
- // Flags contain the following information:
- // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits:
- // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address
- // is on the specified number of bytes.
- // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address.
- // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not.
- // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children)
- // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not
- const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos);
- const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags));
- const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags));
-
- bool needsToInvokeOnTerminal = false;
-
- // This gets only ONE character from the stream. Next there will be:
- // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node
- // else if FLAG_IS_TERMINAL: the frequency
- // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address
- // Note that you can't have a node that both is not a terminal and has no children.
- int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos);
- assert(NOT_A_CHARACTER != c);
-
- // We are going to loop through each character and make it look like it's a different
- // node each time. To do that, we will process characters in this node in order until
- // we find the character terminator. This is signalled by getCharCode* returning
- // NOT_A_CHARACTER.
- // As a special case, if there is only one character in this node, we must not read the
- // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags.
- // This way, each loop run will look like a "virtual node".
- do {
- // We prefetch the next char. If 'c' is the last char of this node, we will have
- // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node
- // should behave as a terminal or not and whether we have children.
- const int32_t nextc = hasMultipleChars
- ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER;
- const bool isLastChar = (NOT_A_CHARACTER == nextc);
- // If there are more chars in this nodes, then this virtual node is not a terminal.
- // If we are on the last char, this virtual node is a terminal if this node is.
- const bool isTerminal = isLastChar && isTerminalNode;
-
- Correction::CorrectionType stateType = correction->processCharAndCalcState(
- c, isTerminal);
- if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL
- || stateType == Correction::ON_TERMINAL) {
- needsToInvokeOnTerminal = true;
- } else if (stateType == Correction::UNRELATED || correction->needsToPrune()) {
- // We found that this is an unrelated character, so we should give up traversing
- // this node and its children entirely.
- // However we may not be on the last virtual node yet so we skip the remaining
- // characters in this node, the frequency if it's there, read the next sibling
- // position to output it, then return false.
- // We don't have to output other values because we return false, as in
- // "don't traverse children".
- if (!isLastChar) {
- pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos);
- }
- pos = BinaryFormat::skipFrequency(flags, pos);
- *nextSiblingPosition =
- BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
- return false;
- }
-
- // Prepare for the next character. Promote the prefetched char to current char - the loop
- // will take care of prefetching the next. If we finally found our last char, nextc will
- // contain NOT_A_CHARACTER.
- c = nextc;
- } while (NOT_A_CHARACTER != c);
-
- if (isTerminalNode) {
- // The frequency should be here, because we come here only if this is actually
- // a terminal node, and we are on its last char.
- const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos);
- const int childrenAddressPos = BinaryFormat::skipFrequency(flags, pos);
- const int attributesPos = BinaryFormat::skipChildrenPosition(flags, childrenAddressPos);
- TerminalAttributes terminalAttributes(DICT_ROOT, flags, attributesPos);
- onTerminal(freq, terminalAttributes, correction, queuePool, needsToInvokeOnTerminal,
- currentWordIndex);
-
- // If there are more chars in this node, then this virtual node has children.
- // If we are on the last char, this virtual node has children if this node has.
- const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags);
-
- // This character matched the typed character (enough to traverse the node at least)
- // so we just evaluated it. Now we should evaluate this virtual node's children - that
- // is, if it has any. If it has no children, we're done here - so we skip the end of
- // the node, output the siblings position, and return false "don't traverse children".
- // Note that !hasChildren implies isLastChar, so we know we don't have to skip any
- // remaining char in this group for there can't be any.
- if (!hasChildren) {
- pos = BinaryFormat::skipFrequency(flags, pos);
- *nextSiblingPosition =
- BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
- return false;
- }
-
- // Optimization: Prune out words that are too long compared to how much was typed.
- if (correction->needsToPrune()) {
- pos = BinaryFormat::skipFrequency(flags, pos);
- *nextSiblingPosition =
- BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
- if (DEBUG_DICT_FULL) {
- AKLOGI("Traversing was pruned.");
- }
- return false;
- }
- }
-
- // Now we finished processing this node, and we want to traverse children. If there are no
- // children, we can't come here.
- assert(BinaryFormat::hasChildrenInFlags(flags));
-
- // If this node was a terminal it still has the frequency under the pointer (it may have been
- // read, but not skipped - see readFrequencyWithoutMovingPointer).
- // Next come the children position, then possibly attributes (attributes are bigrams only for
- // now, maybe something related to shortcuts in the future).
- // Once this is read, we still need to output the number of nodes in the immediate children of
- // this node, so we read and output it before returning true, as in "please traverse children".
- pos = BinaryFormat::skipFrequency(flags, pos);
- int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos);
- *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos);
- *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos);
- *newChildrenPosition = childrenPos;
- return true;
-}
-
-} // namespace latinime