diff options
Diffstat (limited to 'native/src/unigram_dictionary.cpp')
-rw-r--r-- | native/src/unigram_dictionary.cpp | 894 |
1 files changed, 0 insertions, 894 deletions
diff --git a/native/src/unigram_dictionary.cpp b/native/src/unigram_dictionary.cpp deleted file mode 100644 index ed4c066f3..000000000 --- a/native/src/unigram_dictionary.cpp +++ /dev/null @@ -1,894 +0,0 @@ -/* -** -** Copyright 2010, The Android Open Source Project -** -** Licensed under the Apache License, Version 2.0 (the "License"); -** you may not use this file except in compliance with the License. -** You may obtain a copy of the License at -** -** http://www.apache.org/licenses/LICENSE-2.0 -** -** Unless required by applicable law or agreed to in writing, software -** distributed under the License is distributed on an "AS IS" BASIS, -** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -** See the License for the specific language governing permissions and -** limitations under the License. -*/ - -#include <assert.h> -#include <string.h> - -#define LOG_TAG "LatinIME: unigram_dictionary.cpp" - -#include "char_utils.h" -#include "dictionary.h" -#include "unigram_dictionary.h" - -#include "binary_format.h" -#include "terminal_attributes.h" - -namespace latinime { - -const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] = - { { 'a', 'e', 0x00E4 }, // U+00E4 : LATIN SMALL LETTER A WITH DIAERESIS - { 'o', 'e', 0x00F6 }, // U+00F6 : LATIN SMALL LETTER O WITH DIAERESIS - { 'u', 'e', 0x00FC } }; // U+00FC : LATIN SMALL LETTER U WITH DIAERESIS - -const UnigramDictionary::digraph_t UnigramDictionary::FRENCH_LIGATURES_DIGRAPHS[] = - { { 'a', 'e', 0x00E6 }, // U+00E6 : LATIN SMALL LETTER AE - { 'o', 'e', 0x0153 } }; // U+0153 : LATIN SMALL LIGATURE OE - -// TODO: check the header -UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier, - int fullWordMultiplier, int maxWordLength, int maxWords, - const bool isLatestDictVersion) - : DICT_ROOT(streamStart), MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords), - IS_LATEST_DICT_VERSION(isLatestDictVersion), - TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier), - // TODO : remove this variable. - ROOT_POS(0), - BYTES_IN_ONE_CHAR(sizeof(int)), - MAX_DIGRAPH_SEARCH_DEPTH(DEFAULT_MAX_DIGRAPH_SEARCH_DEPTH) { - if (DEBUG_DICT) { - AKLOGI("UnigramDictionary - constructor"); - } -} - -UnigramDictionary::~UnigramDictionary() { -} - -static inline unsigned int getCodesBufferSize(const int *codes, const int codesSize) { - return sizeof(*codes) * codesSize; -} - -// TODO: This needs to take a const unsigned short* and not tinker with its contents -static inline void addWord( - unsigned short *word, int length, int frequency, WordsPriorityQueue *queue) { - queue->push(frequency, word, length); -} - -// Return the replacement code point for a digraph, or 0 if none. -int UnigramDictionary::getDigraphReplacement(const int *codes, const int i, const int codesSize, - const digraph_t* const digraphs, const unsigned int digraphsSize) const { - - // There can't be a digraph if we don't have at least 2 characters to examine - if (i + 2 > codesSize) return false; - - // Search for the first char of some digraph - int lastDigraphIndex = -1; - const int thisChar = codes[i]; - for (lastDigraphIndex = digraphsSize - 1; lastDigraphIndex >= 0; --lastDigraphIndex) { - if (thisChar == digraphs[lastDigraphIndex].first) break; - } - // No match: return early - if (lastDigraphIndex < 0) return 0; - - // It's an interesting digraph if the second char matches too. - if (digraphs[lastDigraphIndex].second == codes[i + 1]) { - return digraphs[lastDigraphIndex].replacement; - } else { - return 0; - } -} - -// Mostly the same arguments as the non-recursive version, except: -// codes is the original value. It points to the start of the work buffer, and gets passed as is. -// codesSize is the size of the user input (thus, it is the size of codesSrc). -// codesDest is the current point in the work buffer. -// codesSrc is the current point in the user-input, original, content-unmodified buffer. -// codesRemain is the remaining size in codesSrc. -void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo, - const int *xcoordinates, const int *ycoordinates, const int *codesBuffer, - int *xCoordinatesBuffer, int *yCoordinatesBuffer, - const int codesBufferSize, const int flags, const int *codesSrc, - const int codesRemain, const int currentDepth, int *codesDest, Correction *correction, - WordsPriorityQueuePool *queuePool, - const digraph_t* const digraphs, const unsigned int digraphsSize) { - - const int startIndex = codesDest - codesBuffer; - if (currentDepth < MAX_DIGRAPH_SEARCH_DEPTH) { - for (int i = 0; i < codesRemain; ++i) { - xCoordinatesBuffer[startIndex + i] = xcoordinates[codesBufferSize - codesRemain + i]; - yCoordinatesBuffer[startIndex + i] = ycoordinates[codesBufferSize - codesRemain + i]; - const int replacementCodePoint = - getDigraphReplacement(codesSrc, i, codesRemain, digraphs, digraphsSize); - if (0 != replacementCodePoint) { - // Found a digraph. We will try both spellings. eg. the word is "pruefen" - - // Copy the word up to the first char of the digraph, including proximity chars, - // and overwrite the primary code with the replacement code point. Then, continue - // processing on the remaining part of the word, skipping the second char of the - // digraph. - // In our example, copy "pru", replace "u" with the version with the diaeresis and - // continue running on "fen". - // Make i the index of the second char of the digraph for simplicity. Forgetting - // to do that results in an infinite recursion so take care! - ++i; - memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR); - codesDest[(i - 1) * (BYTES_IN_ONE_CHAR / sizeof(codesDest[0]))] = - replacementCodePoint; - getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, - codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize, flags, - codesSrc + i + 1, codesRemain - i - 1, - currentDepth + 1, codesDest + i, correction, - queuePool, digraphs, digraphsSize); - - // Copy the second char of the digraph in place, then continue processing on - // the remaining part of the word. - // In our example, after "pru" in the buffer copy the "e", and continue on "fen" - memcpy(codesDest + i, codesSrc + i, BYTES_IN_ONE_CHAR); - getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, - codesBuffer, xCoordinatesBuffer, yCoordinatesBuffer, codesBufferSize, flags, - codesSrc + i, codesRemain - i, currentDepth + 1, - codesDest + i, correction, queuePool, - digraphs, digraphsSize); - return; - } - } - } - - // If we come here, we hit the end of the word: let's check it against the dictionary. - // In our example, we'll come here once for "prufen" and then once for "pruefen". - // If the word contains several digraphs, we'll come it for the product of them. - // eg. if the word is "ueberpruefen" we'll test, in order, against - // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen". - const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain; - if (0 != remainingBytes) { - memcpy(codesDest, codesSrc, remainingBytes); - memcpy(&xCoordinatesBuffer[startIndex], &xcoordinates[codesBufferSize - codesRemain], - sizeof(int) * codesRemain); - memcpy(&yCoordinatesBuffer[startIndex], &ycoordinates[codesBufferSize - codesRemain], - sizeof(int) * codesRemain); - } - - getWordSuggestions(proximityInfo, xCoordinatesBuffer, yCoordinatesBuffer, codesBuffer, - startIndex + codesRemain, flags, correction, - queuePool); -} - -int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, - WordsPriorityQueuePool *queuePool, Correction *correction, const int *xcoordinates, - const int *ycoordinates, const int *codes, const int codesSize, const int flags, - unsigned short *outWords, int *frequencies) { - - queuePool->clearAll(); - Correction* masterCorrection = correction; - if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags) - { // Incrementally tune the word and try all possibilities - int codesBuffer[getCodesBufferSize(codes, codesSize)]; - int xCoordinatesBuffer[codesSize]; - int yCoordinatesBuffer[codesSize]; - getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, - xCoordinatesBuffer, yCoordinatesBuffer, - codesSize, flags, codes, codesSize, 0, codesBuffer, masterCorrection, queuePool, - GERMAN_UMLAUT_DIGRAPHS, - sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0])); - } else if (REQUIRES_FRENCH_LIGATURES_PROCESSING & flags) { - int codesBuffer[getCodesBufferSize(codes, codesSize)]; - int xCoordinatesBuffer[codesSize]; - int yCoordinatesBuffer[codesSize]; - getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, - xCoordinatesBuffer, yCoordinatesBuffer, - codesSize, flags, codes, codesSize, 0, codesBuffer, masterCorrection, queuePool, - FRENCH_LIGATURES_DIGRAPHS, - sizeof(FRENCH_LIGATURES_DIGRAPHS) / sizeof(FRENCH_LIGATURES_DIGRAPHS[0])); - } else { // Normal processing - getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize, flags, - masterCorrection, queuePool); - } - - PROF_START(20); - if (DEBUG_DICT) { - double ns = queuePool->getMasterQueue()->getHighestNormalizedScore( - proximityInfo->getPrimaryInputWord(), codesSize, 0, 0, 0); - ns += 0; - AKLOGI("Max normalized score = %f", ns); - } - const int suggestedWordsCount = - queuePool->getMasterQueue()->outputSuggestions(frequencies, outWords); - - if (DEBUG_DICT) { - double ns = queuePool->getMasterQueue()->getHighestNormalizedScore( - proximityInfo->getPrimaryInputWord(), codesSize, 0, 0, 0); - ns += 0; - AKLOGI("Returning %d words", suggestedWordsCount); - /// Print the returned words - for (int j = 0; j < suggestedWordsCount; ++j) { - short unsigned int* w = outWords + j * MAX_WORD_LENGTH; - char s[MAX_WORD_LENGTH]; - for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i]; - AKLOGI("%s %i", s, frequencies[j]); - } - } - PROF_END(20); - PROF_CLOSE; - return suggestedWordsCount; -} - -void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo, - const int *xcoordinates, const int *ycoordinates, const int *codes, - const int inputLength, const int flags, Correction *correction, - WordsPriorityQueuePool *queuePool) { - - PROF_OPEN; - PROF_START(0); - PROF_END(0); - - PROF_START(1); - const bool useFullEditDistance = USE_FULL_EDIT_DISTANCE & flags; - getOneWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, useFullEditDistance, - inputLength, correction, queuePool); - PROF_END(1); - - PROF_START(2); - // Note: This line is intentionally left blank - PROF_END(2); - - PROF_START(3); - // Note: This line is intentionally left blank - PROF_END(3); - - PROF_START(4); - bool hasAutoCorrectionCandidate = false; - WordsPriorityQueue* masterQueue = queuePool->getMasterQueue(); - if (masterQueue->size() > 0) { - double nsForMaster = masterQueue->getHighestNormalizedScore( - proximityInfo->getPrimaryInputWord(), inputLength, 0, 0, 0); - hasAutoCorrectionCandidate = (nsForMaster > START_TWO_WORDS_CORRECTION_THRESHOLD); - } - PROF_END(4); - - PROF_START(5); - // Multiple word suggestions - if (SUGGEST_MULTIPLE_WORDS - && inputLength >= MIN_USER_TYPED_LENGTH_FOR_MULTIPLE_WORD_SUGGESTION) { - getSplitMultipleWordsSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, - useFullEditDistance, inputLength, correction, queuePool, - hasAutoCorrectionCandidate); - } - PROF_END(5); - - PROF_START(6); - // Note: This line is intentionally left blank - PROF_END(6); - - if (DEBUG_DICT) { - queuePool->dumpSubQueue1TopSuggestions(); - for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) { - WordsPriorityQueue* queue = queuePool->getSubQueue(FIRST_WORD_INDEX, i); - if (queue->size() > 0) { - WordsPriorityQueue::SuggestedWord* sw = queue->top(); - const int score = sw->mScore; - const unsigned short* word = sw->mWord; - const int wordLength = sw->mWordLength; - double ns = Correction::RankingAlgorithm::calcNormalizedScore( - proximityInfo->getPrimaryInputWord(), i, word, wordLength, score); - ns += 0; - AKLOGI("--- TOP SUB WORDS for %d --- %d %f [%d]", i, score, ns, - (ns > TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD)); - DUMP_WORD(proximityInfo->getPrimaryInputWord(), i); - DUMP_WORD(word, wordLength); - } - } - } -} - -void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xCoordinates, - const int *yCoordinates, const int *codes, const int inputLength, Correction *correction) { - if (DEBUG_DICT) { - AKLOGI("initSuggest"); - } - proximityInfo->setInputParams(codes, inputLength, xCoordinates, yCoordinates); - const int maxDepth = min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH); - correction->initCorrection(proximityInfo, inputLength, maxDepth); -} - -static const char QUOTE = '\''; -static const char SPACE = ' '; - -void UnigramDictionary::getOneWordSuggestions(ProximityInfo *proximityInfo, - const int *xcoordinates, const int *ycoordinates, const int *codes, - const bool useFullEditDistance, const int inputLength, Correction *correction, - WordsPriorityQueuePool *queuePool) { - initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, inputLength, correction); - getSuggestionCandidates(useFullEditDistance, inputLength, correction, queuePool, - true /* doAutoCompletion */, DEFAULT_MAX_ERRORS, FIRST_WORD_INDEX); -} - -void UnigramDictionary::getSuggestionCandidates(const bool useFullEditDistance, - const int inputLength, Correction *correction, WordsPriorityQueuePool *queuePool, - const bool doAutoCompletion, const int maxErrors, const int currentWordIndex) { - // TODO: Remove setCorrectionParams - correction->setCorrectionParams(0, 0, 0, - -1 /* spaceProximityPos */, -1 /* missingSpacePos */, useFullEditDistance, - doAutoCompletion, maxErrors); - int rootPosition = ROOT_POS; - // Get the number of children of root, then increment the position - int childCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &rootPosition); - int outputIndex = 0; - - correction->initCorrectionState(rootPosition, childCount, (inputLength <= 0)); - - // Depth first search - while (outputIndex >= 0) { - if (correction->initProcessState(outputIndex)) { - int siblingPos = correction->getTreeSiblingPos(outputIndex); - int firstChildPos; - - const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, - correction, &childCount, &firstChildPos, &siblingPos, queuePool, - currentWordIndex); - // Update next sibling pos - correction->setTreeSiblingPos(outputIndex, siblingPos); - - if (needsToTraverseChildrenNodes) { - // Goes to child node - outputIndex = correction->goDownTree(outputIndex, childCount, firstChildPos); - } - } else { - // Goes to parent sibling node - outputIndex = correction->getTreeParentIndex(outputIndex); - } - } -} - -inline void UnigramDictionary::onTerminal(const int freq, - const TerminalAttributes& terminalAttributes, Correction *correction, - WordsPriorityQueuePool *queuePool, const bool addToMasterQueue, - const int currentWordIndex) { - const int inputIndex = correction->getInputIndex(); - const bool addToSubQueue = inputIndex < SUB_QUEUE_MAX_COUNT; - - int wordLength; - unsigned short* wordPointer; - - if ((currentWordIndex == FIRST_WORD_INDEX) && addToMasterQueue) { - WordsPriorityQueue *masterQueue = queuePool->getMasterQueue(); - const int finalFreq = correction->getFinalFreq(freq, &wordPointer, &wordLength); - if (finalFreq != NOT_A_FREQUENCY) { - if (!terminalAttributes.isShortcutOnly()) { - addWord(wordPointer, wordLength, finalFreq, masterQueue); - } - - // Please note that the shortcut candidates will be added to the master queue only. - TerminalAttributes::ShortcutIterator iterator = - terminalAttributes.getShortcutIterator(); - while (iterator.hasNextShortcutTarget()) { - // TODO: addWord only supports weak ordering, meaning we have no means - // to control the order of the shortcuts relative to one another or to the word. - // We need to either modulate the frequency of each shortcut according - // to its own shortcut frequency or to make the queue - // so that the insert order is protected inside the queue for words - // with the same score. - uint16_t shortcutTarget[MAX_WORD_LENGTH_INTERNAL]; - const int shortcutTargetStringLength = iterator.getNextShortcutTarget( - MAX_WORD_LENGTH_INTERNAL, shortcutTarget); - addWord(shortcutTarget, shortcutTargetStringLength, finalFreq, masterQueue); - } - } - } - - // We only allow two words + other error correction for words with SUB_QUEUE_MIN_WORD_LENGTH - // or more length. - if (inputIndex >= SUB_QUEUE_MIN_WORD_LENGTH && addToSubQueue) { - WordsPriorityQueue *subQueue; - subQueue = queuePool->getSubQueue(currentWordIndex, inputIndex); - if (!subQueue) { - return; - } - const int finalFreq = correction->getFinalFreqForSubQueue(freq, &wordPointer, &wordLength, - inputIndex); - addWord(wordPointer, wordLength, finalFreq, subQueue); - } -} - -bool UnigramDictionary::getSubStringSuggestion( - ProximityInfo *proximityInfo, const int *xcoordinates, const int *ycoordinates, - const int *codes, const bool useFullEditDistance, Correction *correction, - WordsPriorityQueuePool* queuePool, const int inputLength, - const bool hasAutoCorrectionCandidate, const int currentWordIndex, - const int inputWordStartPos, const int inputWordLength, - const int outputWordStartPos, const bool isSpaceProximity, int *freqArray, - int*wordLengthArray, unsigned short* outputWord, int *outputWordLength) { - unsigned short* tempOutputWord = 0; - int nextWordLength = 0; - // TODO: Optimize init suggestion - initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, - inputLength, correction); - - int freq = getMostFrequentWordLike( - inputWordStartPos, inputWordLength, proximityInfo, mWord); - if (freq > 0) { - nextWordLength = inputWordLength; - tempOutputWord = mWord; - } else if (!hasAutoCorrectionCandidate) { - if (inputWordStartPos > 0) { - const int offset = inputWordStartPos; - initSuggestions(proximityInfo, &xcoordinates[offset], &ycoordinates[offset], - codes + offset, inputWordLength, correction); - queuePool->clearSubQueue(currentWordIndex); - getSuggestionCandidates(useFullEditDistance, inputWordLength, correction, - queuePool, false, MAX_ERRORS_FOR_TWO_WORDS, currentWordIndex); - if (DEBUG_DICT) { - if (currentWordIndex < MULTIPLE_WORDS_SUGGESTION_MAX_WORDS) { - AKLOGI("Dump word candidates(%d) %d", currentWordIndex, inputWordLength); - for (int i = 0; i < SUB_QUEUE_MAX_COUNT; ++i) { - queuePool->getSubQueue(currentWordIndex, i)->dumpTopWord(); - } - } - } - } - WordsPriorityQueue* queue = queuePool->getSubQueue(currentWordIndex, inputWordLength); - if (!queue || queue->size() < 1) { - return false; - } - int score = 0; - const double ns = queue->getHighestNormalizedScore( - proximityInfo->getPrimaryInputWord(), inputWordLength, - &tempOutputWord, &score, &nextWordLength); - if (DEBUG_DICT) { - AKLOGI("NS(%d) = %f, Score = %d", currentWordIndex, ns, score); - } - // Two words correction won't be done if the score of the first word doesn't exceed the - // threshold. - if (ns < TWO_WORDS_CORRECTION_WITH_OTHER_ERROR_THRESHOLD - || nextWordLength < SUB_QUEUE_MIN_WORD_LENGTH) { - return false; - } - freq = score >> (nextWordLength + TWO_WORDS_PLUS_OTHER_ERROR_CORRECTION_DEMOTION_DIVIDER); - } - if (DEBUG_DICT) { - AKLOGI("Freq(%d): %d, length: %d, input length: %d, input start: %d (%d)" - , currentWordIndex, freq, nextWordLength, inputWordLength, inputWordStartPos, - wordLengthArray[0]); - } - if (freq <= 0 || nextWordLength <= 0 - || MAX_WORD_LENGTH <= (outputWordStartPos + nextWordLength)) { - return false; - } - for (int i = 0; i < nextWordLength; ++i) { - outputWord[outputWordStartPos + i] = tempOutputWord[i]; - } - - // Put output values - freqArray[currentWordIndex] = freq; - // TODO: put output length instead of input length - wordLengthArray[currentWordIndex] = inputWordLength; - const int tempOutputWordLength = outputWordStartPos + nextWordLength; - if (outputWordLength) { - *outputWordLength = tempOutputWordLength; - } - - if ((inputWordStartPos + inputWordLength) < inputLength) { - if (outputWordStartPos + nextWordLength >= MAX_WORD_LENGTH) { - return false; - } - outputWord[tempOutputWordLength] = SPACE; - if (outputWordLength) { - ++*outputWordLength; - } - } else if (currentWordIndex >= 1) { - // TODO: Handle 3 or more words - const int pairFreq = correction->getFreqForSplitMultipleWords( - freqArray, wordLengthArray, currentWordIndex + 1, isSpaceProximity, outputWord); - if (DEBUG_DICT) { - DUMP_WORD(outputWord, tempOutputWordLength); - AKLOGI("Split two words: %d, %d, %d, %d, (%d) %d", freqArray[0], freqArray[1], pairFreq, - inputLength, wordLengthArray[0], tempOutputWordLength); - } - addWord(outputWord, tempOutputWordLength, pairFreq, queuePool->getMasterQueue()); - } - return true; -} - -void UnigramDictionary::getMultiWordsSuggestionRec(ProximityInfo *proximityInfo, - const int *xcoordinates, const int *ycoordinates, const int *codes, - const bool useFullEditDistance, const int inputLength, - Correction *correction, WordsPriorityQueuePool* queuePool, - const bool hasAutoCorrectionCandidate, const int startInputPos, const int startWordIndex, - const int outputWordLength, int *freqArray, int* wordLengthArray, - unsigned short* outputWord) { - if (startWordIndex >= (MULTIPLE_WORDS_SUGGESTION_MAX_WORDS - 1)) { - // Return if the last word index - return; - } - if (startWordIndex >= 1 - && (hasAutoCorrectionCandidate - || inputLength < MIN_INPUT_LENGTH_FOR_THREE_OR_MORE_WORDS_CORRECTION)) { - // Do not suggest 3+ words if already has auto correction candidate - return; - } - for (int i = startInputPos + 1; i < inputLength; ++i) { - if (DEBUG_CORRECTION_FREQ) { - AKLOGI("Multi words(%d), start in %d sep %d start out %d", - startWordIndex, startInputPos, i, outputWordLength); - DUMP_WORD(outputWord, outputWordLength); - } - int tempOutputWordLength = 0; - // Current word - int inputWordStartPos = startInputPos; - int inputWordLength = i - startInputPos; - if (!getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes, - useFullEditDistance, correction, queuePool, inputLength, hasAutoCorrectionCandidate, - startWordIndex, inputWordStartPos, inputWordLength, outputWordLength, - true /* not used */, freqArray, wordLengthArray, outputWord, - &tempOutputWordLength)) { - continue; - } - - if (DEBUG_CORRECTION_FREQ) { - AKLOGI("Do missing space correction"); - } - // Next word - // Missing space - inputWordStartPos = i; - inputWordLength = inputLength - i; - if(!getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes, - useFullEditDistance, correction, queuePool, inputLength, hasAutoCorrectionCandidate, - startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength, - false /* missing space */, freqArray, wordLengthArray, outputWord, 0)) { - getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes, - useFullEditDistance, inputLength, correction, queuePool, - hasAutoCorrectionCandidate, inputWordStartPos, startWordIndex + 1, - tempOutputWordLength, freqArray, wordLengthArray, outputWord); - } - - // Mistyped space - ++inputWordStartPos; - --inputWordLength; - - if (inputWordLength <= 0) { - continue; - } - - const int x = xcoordinates[inputWordStartPos - 1]; - const int y = ycoordinates[inputWordStartPos - 1]; - if (!proximityInfo->hasSpaceProximity(x, y)) { - continue; - } - - if (DEBUG_CORRECTION_FREQ) { - AKLOGI("Do mistyped space correction"); - } - getSubStringSuggestion(proximityInfo, xcoordinates, ycoordinates, codes, - useFullEditDistance, correction, queuePool, inputLength, hasAutoCorrectionCandidate, - startWordIndex + 1, inputWordStartPos, inputWordLength, tempOutputWordLength, - true /* mistyped space */, freqArray, wordLengthArray, outputWord, 0); - } -} - -void UnigramDictionary::getSplitMultipleWordsSuggestions(ProximityInfo *proximityInfo, - const int *xcoordinates, const int *ycoordinates, const int *codes, - const bool useFullEditDistance, const int inputLength, - Correction *correction, WordsPriorityQueuePool* queuePool, - const bool hasAutoCorrectionCandidate) { - if (inputLength >= MAX_WORD_LENGTH) return; - if (DEBUG_DICT) { - AKLOGI("--- Suggest multiple words"); - } - - // Allocating fixed length array on stack - unsigned short outputWord[MAX_WORD_LENGTH]; - int freqArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS]; - int wordLengthArray[MULTIPLE_WORDS_SUGGESTION_MAX_WORDS]; - const int outputWordLength = 0; - const int startInputPos = 0; - const int startWordIndex = 0; - getMultiWordsSuggestionRec(proximityInfo, xcoordinates, ycoordinates, codes, - useFullEditDistance, inputLength, correction, queuePool, hasAutoCorrectionCandidate, - startInputPos, startWordIndex, outputWordLength, freqArray, wordLengthArray, - outputWord); -} - -// Wrapper for getMostFrequentWordLikeInner, which matches it to the previous -// interface. -inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex, - const int inputLength, ProximityInfo *proximityInfo, unsigned short *word) { - uint16_t inWord[inputLength]; - - for (int i = 0; i < inputLength; ++i) { - inWord[i] = (uint16_t)proximityInfo->getPrimaryCharAt(startInputIndex + i); - } - return getMostFrequentWordLikeInner(inWord, inputLength, word); -} - -// This function will take the position of a character array within a CharGroup, -// and check it actually like-matches the word in inWord starting at startInputIndex, -// that is, it matches it with case and accents squashed. -// The function returns true if there was a full match, false otherwise. -// The function will copy on-the-fly the characters in the CharGroup to outNewWord. -// It will also place the end position of the array in outPos; in outInputIndex, -// it will place the index of the first char AFTER the match if there was a match, -// and the initial position if there was not. It makes sense because if there was -// a match we want to continue searching, but if there was not, we want to go to -// the next CharGroup. -// In and out parameters may point to the same location. This function takes care -// not to use any input parameters after it wrote into its outputs. -static inline bool testCharGroupForContinuedLikeness(const uint8_t flags, - const uint8_t* const root, const int startPos, - const uint16_t* const inWord, const int startInputIndex, - int32_t* outNewWord, int* outInputIndex, int* outPos) { - const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags)); - int pos = startPos; - int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); - int32_t baseChar = toBaseLowerCase(character); - const uint16_t wChar = toBaseLowerCase(inWord[startInputIndex]); - - if (baseChar != wChar) { - *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos; - *outInputIndex = startInputIndex; - return false; - } - int inputIndex = startInputIndex; - outNewWord[inputIndex] = character; - if (hasMultipleChars) { - character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); - while (NOT_A_CHARACTER != character) { - baseChar = toBaseLowerCase(character); - if (toBaseLowerCase(inWord[++inputIndex]) != baseChar) { - *outPos = BinaryFormat::skipOtherCharacters(root, pos); - *outInputIndex = startInputIndex; - return false; - } - outNewWord[inputIndex] = character; - character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); - } - } - *outInputIndex = inputIndex + 1; - *outPos = pos; - return true; -} - -// This function is invoked when a word like the word searched for is found. -// It will compare the frequency to the max frequency, and if greater, will -// copy the word into the output buffer. In output value maxFreq, it will -// write the new maximum frequency if it changed. -static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length, - short unsigned int* outWord, int* maxFreq) { - if (freq > *maxFreq) { - for (int q = 0; q < length; ++q) - outWord[q] = newWord[q]; - outWord[length] = 0; - *maxFreq = freq; - } -} - -// Will find the highest frequency of the words like the one passed as an argument, -// that is, everything that only differs by case/accents. -int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord, - const int length, short unsigned int* outWord) { - int32_t newWord[MAX_WORD_LENGTH_INTERNAL]; - int depth = 0; - int maxFreq = -1; - const uint8_t* const root = DICT_ROOT; - - int startPos = 0; - mStackChildCount[0] = BinaryFormat::getGroupCountAndForwardPointer(root, &startPos); - mStackInputIndex[0] = 0; - mStackSiblingPos[0] = startPos; - while (depth >= 0) { - const int charGroupCount = mStackChildCount[depth]; - int pos = mStackSiblingPos[depth]; - for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) { - int inputIndex = mStackInputIndex[depth]; - const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); - // Test whether all chars in this group match with the word we are searching for. If so, - // we want to traverse its children (or if the length match, evaluate its frequency). - // Note that this function will output the position regardless, but will only write - // into inputIndex if there is a match. - const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord, - inputIndex, newWord, &inputIndex, &pos); - if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) { - const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos); - onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq); - } - pos = BinaryFormat::skipFrequency(flags, pos); - const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos); - const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos); - // If we had a match and the word has children, we want to traverse them. We don't have - // to traverse words longer than the one we are searching for, since they will not match - // anyway, so don't traverse unless inputIndex < length. - if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) { - // Save position for this depth, to get back to this once children are done - mStackChildCount[depth] = charGroupIndex; - mStackSiblingPos[depth] = siblingPos; - // Prepare stack values for next depth - ++depth; - int childrenPos = childrenNodePos; - mStackChildCount[depth] = - BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos); - mStackSiblingPos[depth] = childrenPos; - mStackInputIndex[depth] = inputIndex; - pos = childrenPos; - // Go to the next depth level. - ++depth; - break; - } else { - // No match, or no children, or word too long to ever match: go the next sibling. - pos = siblingPos; - } - } - --depth; - } - return maxFreq; -} - -bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const { - return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length); -} - -// TODO: remove this function. -int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset, - int length) const { - return -1; -} - -// ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not. -// If the return value is false, then the caller should read in the output "nextSiblingPosition" -// to find out the address of the next sibling node and pass it to a new call of processCurrentNode. -// It is worthy to note that when false is returned, the output values other than -// nextSiblingPosition are undefined. -// If the return value is true, then the caller must proceed to traverse the children of this -// node. processCurrentNode will output the information about the children: their count in -// newCount, their position in newChildrenPosition, the traverseAllNodes flag in -// newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the -// diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into -// newOutputIndex. Please also note the following caveat: processCurrentNode does not know when -// there aren't any more nodes at this level, it merely returns the address of the first byte after -// the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any -// given level, as output into newCount when traversing this level's parent. -inline bool UnigramDictionary::processCurrentNode(const int initialPos, - Correction *correction, int *newCount, - int *newChildrenPosition, int *nextSiblingPosition, WordsPriorityQueuePool *queuePool, - const int currentWordIndex) { - if (DEBUG_DICT) { - correction->checkState(); - } - int pos = initialPos; - - // Flags contain the following information: - // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits: - // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address - // is on the specified number of bytes. - // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address. - // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not. - // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children) - // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not - const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos); - const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags)); - const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags)); - - bool needsToInvokeOnTerminal = false; - - // This gets only ONE character from the stream. Next there will be: - // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node - // else if FLAG_IS_TERMINAL: the frequency - // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address - // Note that you can't have a node that both is not a terminal and has no children. - int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos); - assert(NOT_A_CHARACTER != c); - - // We are going to loop through each character and make it look like it's a different - // node each time. To do that, we will process characters in this node in order until - // we find the character terminator. This is signalled by getCharCode* returning - // NOT_A_CHARACTER. - // As a special case, if there is only one character in this node, we must not read the - // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags. - // This way, each loop run will look like a "virtual node". - do { - // We prefetch the next char. If 'c' is the last char of this node, we will have - // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node - // should behave as a terminal or not and whether we have children. - const int32_t nextc = hasMultipleChars - ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER; - const bool isLastChar = (NOT_A_CHARACTER == nextc); - // If there are more chars in this nodes, then this virtual node is not a terminal. - // If we are on the last char, this virtual node is a terminal if this node is. - const bool isTerminal = isLastChar && isTerminalNode; - - Correction::CorrectionType stateType = correction->processCharAndCalcState( - c, isTerminal); - if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL - || stateType == Correction::ON_TERMINAL) { - needsToInvokeOnTerminal = true; - } else if (stateType == Correction::UNRELATED || correction->needsToPrune()) { - // We found that this is an unrelated character, so we should give up traversing - // this node and its children entirely. - // However we may not be on the last virtual node yet so we skip the remaining - // characters in this node, the frequency if it's there, read the next sibling - // position to output it, then return false. - // We don't have to output other values because we return false, as in - // "don't traverse children". - if (!isLastChar) { - pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos); - } - pos = BinaryFormat::skipFrequency(flags, pos); - *nextSiblingPosition = - BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); - return false; - } - - // Prepare for the next character. Promote the prefetched char to current char - the loop - // will take care of prefetching the next. If we finally found our last char, nextc will - // contain NOT_A_CHARACTER. - c = nextc; - } while (NOT_A_CHARACTER != c); - - if (isTerminalNode) { - // The frequency should be here, because we come here only if this is actually - // a terminal node, and we are on its last char. - const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos); - const int childrenAddressPos = BinaryFormat::skipFrequency(flags, pos); - const int attributesPos = BinaryFormat::skipChildrenPosition(flags, childrenAddressPos); - TerminalAttributes terminalAttributes(DICT_ROOT, flags, attributesPos); - onTerminal(freq, terminalAttributes, correction, queuePool, needsToInvokeOnTerminal, - currentWordIndex); - - // If there are more chars in this node, then this virtual node has children. - // If we are on the last char, this virtual node has children if this node has. - const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags); - - // This character matched the typed character (enough to traverse the node at least) - // so we just evaluated it. Now we should evaluate this virtual node's children - that - // is, if it has any. If it has no children, we're done here - so we skip the end of - // the node, output the siblings position, and return false "don't traverse children". - // Note that !hasChildren implies isLastChar, so we know we don't have to skip any - // remaining char in this group for there can't be any. - if (!hasChildren) { - pos = BinaryFormat::skipFrequency(flags, pos); - *nextSiblingPosition = - BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); - return false; - } - - // Optimization: Prune out words that are too long compared to how much was typed. - if (correction->needsToPrune()) { - pos = BinaryFormat::skipFrequency(flags, pos); - *nextSiblingPosition = - BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); - if (DEBUG_DICT_FULL) { - AKLOGI("Traversing was pruned."); - } - return false; - } - } - - // Now we finished processing this node, and we want to traverse children. If there are no - // children, we can't come here. - assert(BinaryFormat::hasChildrenInFlags(flags)); - - // If this node was a terminal it still has the frequency under the pointer (it may have been - // read, but not skipped - see readFrequencyWithoutMovingPointer). - // Next come the children position, then possibly attributes (attributes are bigrams only for - // now, maybe something related to shortcuts in the future). - // Once this is read, we still need to output the number of nodes in the immediate children of - // this node, so we read and output it before returning true, as in "please traverse children". - pos = BinaryFormat::skipFrequency(flags, pos); - int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos); - *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); - *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos); - *newChildrenPosition = childrenPos; - return true; -} - -} // namespace latinime |