From e9a0e66716dab4dd3184d009d8920de1961efdfa Mon Sep 17 00:00:00 2001 From: Amin Bandali Date: Mon, 16 Dec 2024 21:45:41 -0500 Subject: Rename to Kelar Keyboard (org.kelar.inputmethod.latin) --- .../latin/makedict/BinaryDictEncoderUtils.java | 839 +++++++++++++++++++++ 1 file changed, 839 insertions(+) create mode 100644 tests/src/org/kelar/inputmethod/latin/makedict/BinaryDictEncoderUtils.java (limited to 'tests/src/org/kelar/inputmethod/latin/makedict/BinaryDictEncoderUtils.java') diff --git a/tests/src/org/kelar/inputmethod/latin/makedict/BinaryDictEncoderUtils.java b/tests/src/org/kelar/inputmethod/latin/makedict/BinaryDictEncoderUtils.java new file mode 100644 index 000000000..3b35288d7 --- /dev/null +++ b/tests/src/org/kelar/inputmethod/latin/makedict/BinaryDictEncoderUtils.java @@ -0,0 +1,839 @@ +/* + * Copyright (C) 2013 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.kelar.inputmethod.latin.makedict; + +import org.kelar.inputmethod.latin.makedict.BinaryDictDecoderUtils.CharEncoding; +import org.kelar.inputmethod.latin.makedict.FormatSpec.FormatOptions; +import org.kelar.inputmethod.latin.makedict.FusionDictionary.PtNode; +import org.kelar.inputmethod.latin.makedict.FusionDictionary.PtNodeArray; + +import java.io.ByteArrayOutputStream; +import java.io.IOException; +import java.io.OutputStream; +import java.util.ArrayList; +import java.util.HashMap; +import java.util.Map.Entry; + +/** + * Encodes binary files for a FusionDictionary. + * + * All the methods in this class are static. + * + * TODO: Rename this class to DictEncoderUtils. + */ +public class BinaryDictEncoderUtils { + + private static final boolean DBG = MakedictLog.DBG; + + private BinaryDictEncoderUtils() { + // This utility class is not publicly instantiable. + } + + // Arbitrary limit to how much passes we consider address size compression should + // terminate in. At the time of this writing, our largest dictionary completes + // compression in five passes. + // If the number of passes exceeds this number, makedict bails with an exception on + // suspicion that a bug might be causing an infinite loop. + private static final int MAX_PASSES = 24; + + /** + * Compute the binary size of the character array. + * + * If only one character, this is the size of this character. If many, it's the sum of their + * sizes + 1 byte for the terminator. + * + * @param characters the character array + * @return the size of the char array, including the terminator if any + */ + static int getPtNodeCharactersSize(final int[] characters, + final HashMap codePointToOneByteCodeMap) { + int size = CharEncoding.getCharArraySize(characters, codePointToOneByteCodeMap); + if (characters.length > 1) size += FormatSpec.PTNODE_TERMINATOR_SIZE; + return size; + } + + /** + * Compute the binary size of the character array in a PtNode + * + * If only one character, this is the size of this character. If many, it's the sum of their + * sizes + 1 byte for the terminator. + * + * @param ptNode the PtNode + * @return the size of the char array, including the terminator if any + */ + private static int getPtNodeCharactersSize(final PtNode ptNode, + final HashMap codePointToOneByteCodeMap) { + return getPtNodeCharactersSize(ptNode.mChars, codePointToOneByteCodeMap); + } + + /** + * Compute the binary size of the PtNode count for a node array. + * @param nodeArray the nodeArray + * @return the size of the PtNode count, either 1 or 2 bytes. + */ + private static int getPtNodeCountSize(final PtNodeArray nodeArray) { + return BinaryDictIOUtils.getPtNodeCountSize(nodeArray.mData.size()); + } + + /** + * Compute the maximum size of a PtNode, assuming 3-byte addresses for everything. + * + * @param ptNode the PtNode to compute the size of. + * @return the maximum size of the PtNode. + */ + private static int getPtNodeMaximumSize(final PtNode ptNode, + final HashMap codePointToOneByteCodeMap) { + int size = getNodeHeaderSize(ptNode, codePointToOneByteCodeMap); + if (ptNode.isTerminal()) { + // If terminal, one byte for the frequency. + size += FormatSpec.PTNODE_FREQUENCY_SIZE; + } + size += FormatSpec.PTNODE_MAX_ADDRESS_SIZE; // For children address + if (null != ptNode.mBigrams) { + size += (FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE + + FormatSpec.PTNODE_ATTRIBUTE_MAX_ADDRESS_SIZE) + * ptNode.mBigrams.size(); + } + return size; + } + + /** + * Compute the maximum size of each PtNode of a PtNode array, assuming 3-byte addresses for + * everything, and caches it in the `mCachedSize' member of the nodes; deduce the size of + * the containing node array, and cache it it its 'mCachedSize' member. + * + * @param ptNodeArray the node array to compute the maximum size of. + */ + private static void calculatePtNodeArrayMaximumSize(final PtNodeArray ptNodeArray, + final HashMap codePointToOneByteCodeMap) { + int size = getPtNodeCountSize(ptNodeArray); + for (PtNode node : ptNodeArray.mData) { + final int nodeSize = getPtNodeMaximumSize(node, codePointToOneByteCodeMap); + node.mCachedSize = nodeSize; + size += nodeSize; + } + ptNodeArray.mCachedSize = size; + } + + /** + * Compute the size of the header (flag + [parent address] + characters size) of a PtNode. + * + * @param ptNode the PtNode of which to compute the size of the header + */ + private static int getNodeHeaderSize(final PtNode ptNode, + final HashMap codePointToOneByteCodeMap) { + return FormatSpec.PTNODE_FLAGS_SIZE + getPtNodeCharactersSize(ptNode, + codePointToOneByteCodeMap); + } + + /** + * Compute the size, in bytes, that an address will occupy. + * + * This can be used either for children addresses (which are always positive) or for + * attribute, which may be positive or negative but + * store their sign bit separately. + * + * @param address the address + * @return the byte size. + */ + static int getByteSize(final int address) { + assert(address <= FormatSpec.UINT24_MAX); + if (!BinaryDictIOUtils.hasChildrenAddress(address)) { + return 0; + } else if (Math.abs(address) <= FormatSpec.UINT8_MAX) { + return 1; + } else if (Math.abs(address) <= FormatSpec.UINT16_MAX) { + return 2; + } else { + return 3; + } + } + + static int writeUIntToBuffer(final byte[] buffer, final int fromPosition, final int value, + final int size) { + int position = fromPosition; + switch(size) { + case 4: + buffer[position++] = (byte) ((value >> 24) & 0xFF); + /* fall through */ + case 3: + buffer[position++] = (byte) ((value >> 16) & 0xFF); + /* fall through */ + case 2: + buffer[position++] = (byte) ((value >> 8) & 0xFF); + /* fall through */ + case 1: + buffer[position++] = (byte) (value & 0xFF); + break; + default: + /* nop */ + } + return position; + } + + static void writeUIntToStream(final OutputStream stream, final int value, final int size) + throws IOException { + switch(size) { + case 4: + stream.write((value >> 24) & 0xFF); + /* fall through */ + case 3: + stream.write((value >> 16) & 0xFF); + /* fall through */ + case 2: + stream.write((value >> 8) & 0xFF); + /* fall through */ + case 1: + stream.write(value & 0xFF); + break; + default: + /* nop */ + } + } + + // End utility methods + + // This method is responsible for finding a nice ordering of the nodes that favors run-time + // cache performance and dictionary size. + /* package for tests */ static ArrayList flattenTree( + final PtNodeArray rootNodeArray) { + final int treeSize = FusionDictionary.countPtNodes(rootNodeArray); + MakedictLog.i("Counted nodes : " + treeSize); + final ArrayList flatTree = new ArrayList<>(treeSize); + return flattenTreeInner(flatTree, rootNodeArray); + } + + private static ArrayList flattenTreeInner(final ArrayList list, + final PtNodeArray ptNodeArray) { + // Removing the node is necessary if the tails are merged, because we would then + // add the same node several times when we only want it once. A number of places in + // the code also depends on any node being only once in the list. + // Merging tails can only be done if there are no attributes. Searching for attributes + // in LatinIME code depends on a total breadth-first ordering, which merging tails + // breaks. If there are no attributes, it should be fine (and reduce the file size) + // to merge tails, and removing the node from the list would be necessary. However, + // we don't merge tails because breaking the breadth-first ordering would result in + // extreme overhead at bigram lookup time (it would make the search function O(n) instead + // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty + // high). + // If no nodes are ever merged, we can't have the same node twice in the list, hence + // searching for duplicates in unnecessary. It is also very performance consuming, + // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making + // this simple list.remove operation O(n*n) overall. On Android this overhead is very + // high. + // For future reference, the code to remove duplicate is a simple : list.remove(node); + list.add(ptNodeArray); + final ArrayList branches = ptNodeArray.mData; + for (PtNode ptNode : branches) { + if (null != ptNode.mChildren) flattenTreeInner(list, ptNode.mChildren); + } + return list; + } + + /** + * Get the offset from a position inside a current node array to a target node array, during + * update. + * + * If the current node array is before the target node array, the target node array has not + * been updated yet, so we should return the offset from the old position of the current node + * array to the old position of the target node array. If on the other hand the target is + * before the current node array, it already has been updated, so we should return the offset + * from the new position in the current node array to the new position in the target node + * array. + * + * @param currentNodeArray node array containing the PtNode where the offset will be written + * @param offsetFromStartOfCurrentNodeArray offset, in bytes, from the start of currentNodeArray + * @param targetNodeArray the target node array to get the offset to + * @return the offset to the target node array + */ + private static int getOffsetToTargetNodeArrayDuringUpdate(final PtNodeArray currentNodeArray, + final int offsetFromStartOfCurrentNodeArray, final PtNodeArray targetNodeArray) { + final boolean isTargetBeforeCurrent = (targetNodeArray.mCachedAddressBeforeUpdate + < currentNodeArray.mCachedAddressBeforeUpdate); + if (isTargetBeforeCurrent) { + return targetNodeArray.mCachedAddressAfterUpdate + - (currentNodeArray.mCachedAddressAfterUpdate + + offsetFromStartOfCurrentNodeArray); + } + return targetNodeArray.mCachedAddressBeforeUpdate + - (currentNodeArray.mCachedAddressBeforeUpdate + offsetFromStartOfCurrentNodeArray); + } + + /** + * Get the offset from a position inside a current node array to a target PtNode, during + * update. + * + * @param currentNodeArray node array containing the PtNode where the offset will be written + * @param offsetFromStartOfCurrentNodeArray offset, in bytes, from the start of currentNodeArray + * @param targetPtNode the target PtNode to get the offset to + * @return the offset to the target PtNode + */ + // TODO: is there any way to factorize this method with the one above? + private static int getOffsetToTargetPtNodeDuringUpdate(final PtNodeArray currentNodeArray, + final int offsetFromStartOfCurrentNodeArray, final PtNode targetPtNode) { + final int oldOffsetBasePoint = currentNodeArray.mCachedAddressBeforeUpdate + + offsetFromStartOfCurrentNodeArray; + final boolean isTargetBeforeCurrent = (targetPtNode.mCachedAddressBeforeUpdate + < oldOffsetBasePoint); + // If the target is before the current node array, then its address has already been + // updated. We can use the AfterUpdate member, and compare it to our own member after + // update. Otherwise, the AfterUpdate member is not updated yet, so we need to use the + // BeforeUpdate member, and of course we have to compare this to our own address before + // update. + if (isTargetBeforeCurrent) { + final int newOffsetBasePoint = currentNodeArray.mCachedAddressAfterUpdate + + offsetFromStartOfCurrentNodeArray; + return targetPtNode.mCachedAddressAfterUpdate - newOffsetBasePoint; + } + return targetPtNode.mCachedAddressBeforeUpdate - oldOffsetBasePoint; + } + + /** + * Computes the actual node array size, based on the cached addresses of the children nodes. + * + * Each node array stores its tentative address. During dictionary address computing, these + * are not final, but they can be used to compute the node array size (the node array size + * depends on the address of the children because the number of bytes necessary to store an + * address depends on its numeric value. The return value indicates whether the node array + * contents (as in, any of the addresses stored in the cache fields) have changed with + * respect to their previous value. + * + * @param ptNodeArray the node array to compute the size of. + * @param dict the dictionary in which the word/attributes are to be found. + * @return false if none of the cached addresses inside the node array changed, true otherwise. + */ + private static boolean computeActualPtNodeArraySize(final PtNodeArray ptNodeArray, + final FusionDictionary dict, + final HashMap codePointToOneByteCodeMap) { + boolean changed = false; + int size = getPtNodeCountSize(ptNodeArray); + for (PtNode ptNode : ptNodeArray.mData) { + ptNode.mCachedAddressAfterUpdate = ptNodeArray.mCachedAddressAfterUpdate + size; + if (ptNode.mCachedAddressAfterUpdate != ptNode.mCachedAddressBeforeUpdate) { + changed = true; + } + int nodeSize = getNodeHeaderSize(ptNode, codePointToOneByteCodeMap); + if (ptNode.isTerminal()) { + nodeSize += FormatSpec.PTNODE_FREQUENCY_SIZE; + } + if (null != ptNode.mChildren) { + nodeSize += getByteSize(getOffsetToTargetNodeArrayDuringUpdate(ptNodeArray, + nodeSize + size, ptNode.mChildren)); + } + if (null != ptNode.mBigrams) { + for (WeightedString bigram : ptNode.mBigrams) { + final int offset = getOffsetToTargetPtNodeDuringUpdate(ptNodeArray, + nodeSize + size + FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE, + FusionDictionary.findWordInTree(dict.mRootNodeArray, bigram.mWord)); + nodeSize += getByteSize(offset) + FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE; + } + } + ptNode.mCachedSize = nodeSize; + size += nodeSize; + } + if (ptNodeArray.mCachedSize != size) { + ptNodeArray.mCachedSize = size; + changed = true; + } + return changed; + } + + /** + * Initializes the cached addresses of node arrays and their containing nodes from their size. + * + * @param flatNodes the list of node arrays. + * @return the byte size of the entire stack. + */ + private static int initializePtNodeArraysCachedAddresses( + final ArrayList flatNodes) { + int nodeArrayOffset = 0; + for (final PtNodeArray nodeArray : flatNodes) { + nodeArray.mCachedAddressBeforeUpdate = nodeArrayOffset; + int nodeCountSize = getPtNodeCountSize(nodeArray); + int nodeffset = 0; + for (final PtNode ptNode : nodeArray.mData) { + ptNode.mCachedAddressBeforeUpdate = ptNode.mCachedAddressAfterUpdate = + nodeCountSize + nodeArrayOffset + nodeffset; + nodeffset += ptNode.mCachedSize; + } + nodeArrayOffset += nodeArray.mCachedSize; + } + return nodeArrayOffset; + } + + /** + * Updates the cached addresses of node arrays after recomputing their new positions. + * + * @param flatNodes the list of node arrays. + */ + private static void updatePtNodeArraysCachedAddresses(final ArrayList flatNodes) { + for (final PtNodeArray nodeArray : flatNodes) { + nodeArray.mCachedAddressBeforeUpdate = nodeArray.mCachedAddressAfterUpdate; + for (final PtNode ptNode : nodeArray.mData) { + ptNode.mCachedAddressBeforeUpdate = ptNode.mCachedAddressAfterUpdate; + } + } + } + + /** + * Compute the addresses and sizes of an ordered list of PtNode arrays. + * + * This method takes a list of PtNode arrays and will update their cached address and size + * values so that they can be written into a file. It determines the smallest size each of the + * PtNode arrays can be given the addresses of its children and attributes, and store that into + * each PtNode. + * The order of the PtNode is given by the order of the array. This method makes no effort + * to find a good order; it only mechanically computes the size this order results in. + * + * @param dict the dictionary + * @param flatNodes the ordered list of PtNode arrays + * @return the same array it was passed. The nodes have been updated for address and size. + */ + /* package */ static ArrayList computeAddresses(final FusionDictionary dict, + final ArrayList flatNodes, + final HashMap codePointToOneByteCodeMap) { + // First get the worst possible sizes and offsets + for (final PtNodeArray n : flatNodes) { + calculatePtNodeArrayMaximumSize(n, codePointToOneByteCodeMap); + } + final int offset = initializePtNodeArraysCachedAddresses(flatNodes); + + MakedictLog.i("Compressing the array addresses. Original size : " + offset); + MakedictLog.i("(Recursively seen size : " + offset + ")"); + + int passes = 0; + boolean changesDone = false; + do { + changesDone = false; + int ptNodeArrayStartOffset = 0; + for (final PtNodeArray ptNodeArray : flatNodes) { + ptNodeArray.mCachedAddressAfterUpdate = ptNodeArrayStartOffset; + final int oldNodeArraySize = ptNodeArray.mCachedSize; + final boolean changed = computeActualPtNodeArraySize(ptNodeArray, dict, + codePointToOneByteCodeMap); + final int newNodeArraySize = ptNodeArray.mCachedSize; + if (oldNodeArraySize < newNodeArraySize) { + throw new RuntimeException("Increased size ?!"); + } + ptNodeArrayStartOffset += newNodeArraySize; + changesDone |= changed; + } + updatePtNodeArraysCachedAddresses(flatNodes); + ++passes; + if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug"); + } while (changesDone); + + final PtNodeArray lastPtNodeArray = flatNodes.get(flatNodes.size() - 1); + MakedictLog.i("Compression complete in " + passes + " passes."); + MakedictLog.i("After address compression : " + + (lastPtNodeArray.mCachedAddressAfterUpdate + lastPtNodeArray.mCachedSize)); + + return flatNodes; + } + + /** + * Validity-checking method. + * + * This method checks a list of PtNode arrays for juxtaposition, that is, it will do + * nothing if each node array's cached address is actually the previous node array's address + * plus the previous node's size. + * If this is not the case, it will throw an exception. + * + * @param arrays the list of node arrays to check + */ + /* package */ static void checkFlatPtNodeArrayList(final ArrayList arrays) { + int offset = 0; + int index = 0; + for (final PtNodeArray ptNodeArray : arrays) { + // BeforeUpdate and AfterUpdate addresses are the same here, so it does not matter + // which we use. + if (ptNodeArray.mCachedAddressAfterUpdate != offset) { + throw new RuntimeException("Wrong address for node " + index + + " : expected " + offset + ", got " + + ptNodeArray.mCachedAddressAfterUpdate); + } + ++index; + offset += ptNodeArray.mCachedSize; + } + } + + /** + * Helper method to write a children position to a file. + * + * @param buffer the buffer to write to. + * @param fromIndex the index in the buffer to write the address to. + * @param position the position to write. + * @return the size in bytes the address actually took. + */ + /* package */ static int writeChildrenPosition(final byte[] buffer, final int fromIndex, + final int position) { + int index = fromIndex; + switch (getByteSize(position)) { + case 1: + buffer[index++] = (byte)position; + return 1; + case 2: + buffer[index++] = (byte)(0xFF & (position >> 8)); + buffer[index++] = (byte)(0xFF & position); + return 2; + case 3: + buffer[index++] = (byte)(0xFF & (position >> 16)); + buffer[index++] = (byte)(0xFF & (position >> 8)); + buffer[index++] = (byte)(0xFF & position); + return 3; + case 0: + return 0; + default: + throw new RuntimeException("Position " + position + " has a strange size"); + } + } + + /** + * Makes the flag value for a PtNode. + * + * @param hasMultipleChars whether the PtNode has multiple chars. + * @param isTerminal whether the PtNode is terminal. + * @param childrenAddressSize the size of a children address. + * @param hasBigrams whether the PtNode has bigrams. + * @param isNotAWord whether the PtNode is not a word. + * @param isPossiblyOffensive whether the PtNode is a possibly offensive entry. + * @return the flags + */ + static int makePtNodeFlags(final boolean hasMultipleChars, final boolean isTerminal, + final int childrenAddressSize, final boolean hasBigrams, + final boolean isNotAWord, final boolean isPossiblyOffensive) { + byte flags = 0; + if (hasMultipleChars) flags |= FormatSpec.FLAG_HAS_MULTIPLE_CHARS; + if (isTerminal) flags |= FormatSpec.FLAG_IS_TERMINAL; + switch (childrenAddressSize) { + case 1: + flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_ONEBYTE; + break; + case 2: + flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_TWOBYTES; + break; + case 3: + flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_THREEBYTES; + break; + case 0: + flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_NOADDRESS; + break; + default: + throw new RuntimeException("Node with a strange address"); + } + if (hasBigrams) flags |= FormatSpec.FLAG_HAS_BIGRAMS; + if (isNotAWord) flags |= FormatSpec.FLAG_IS_NOT_A_WORD; + if (isPossiblyOffensive) flags |= FormatSpec.FLAG_IS_POSSIBLY_OFFENSIVE; + return flags; + } + + /* package */ static byte makePtNodeFlags(final PtNode node, final int childrenOffset) { + return (byte) makePtNodeFlags(node.mChars.length > 1, node.isTerminal(), + getByteSize(childrenOffset), + node.mBigrams != null && !node.mBigrams.isEmpty(), + node.mIsNotAWord, node.mIsPossiblyOffensive); + } + + /** + * Makes the flag value for a bigram. + * + * @param more whether there are more bigrams after this one. + * @param offset the offset of the bigram. + * @param bigramFrequency the frequency of the bigram, 0..255. + * @param unigramFrequency the unigram frequency of the same word, 0..255. + * @param word the second bigram, for debugging purposes + * @return the flags + */ + /* package */ static int makeBigramFlags(final boolean more, final int offset, + final int bigramFrequency, final int unigramFrequency, final String word) { + int bigramFlags = (more ? FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_HAS_NEXT : 0) + + (offset < 0 ? FormatSpec.FLAG_BIGRAM_ATTR_OFFSET_NEGATIVE : 0); + switch (getByteSize(offset)) { + case 1: + bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_ONEBYTE; + break; + case 2: + bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_TWOBYTES; + break; + case 3: + bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_THREEBYTES; + break; + default: + throw new RuntimeException("Strange offset size"); + } + final int frequency; + if (unigramFrequency > bigramFrequency) { + MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word + + "\". Bigram freq is " + bigramFrequency + ", unigram freq for " + + word + " is " + unigramFrequency); + frequency = unigramFrequency; + } else { + frequency = bigramFrequency; + } + bigramFlags += getBigramFrequencyDiff(unigramFrequency, frequency) + & FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_FREQUENCY; + return bigramFlags; + } + + public static int getBigramFrequencyDiff(final int unigramFrequency, + final int bigramFrequency) { + // We compute the difference between 255 (which means probability = 1) and the + // unigram score. We split this into a number of discrete steps. + // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15 + // represents an increase of 16 steps: a value of 15 will be interpreted as the median + // value of the 16th step. In all justice, if the bigram frequency is low enough to be + // rounded below the first step (which means it is less than half a step higher than the + // unigram frequency) then the unigram frequency itself is the best approximation of the + // bigram freq that we could possibly supply, hence we should *not* include this bigram + // in the file at all. + // until this is done, we'll write 0 and slightly overestimate this case. + // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step + // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to + // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the + // step size. Then we compute the start of the first step (the one where value 0 starts) + // by adding half-a-step to the unigramFrequency. From there, we compute the integer + // number of steps to the bigramFrequency. One last thing: we want our steps to include + // their lower bound and exclude their higher bound so we need to have the first step + // start at exactly 1 unit higher than floor(unigramFreq + half a step). + // Note : to reconstruct the score, the dictionary reader will need to divide + // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step, + // and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best + // approximation. (0.5 to get the first step start, and 0.5 to get the middle of the + // step pointed by the discretized frequency. + final float stepSize = + (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency) + / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY); + final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f); + final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize); + // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1 + // here. The best approximation would be the unigram freq itself, so we should not + // include this bigram in the dictionary. For now, register as 0, and live with the + // small over-estimation that we get in this case. TODO: actually remove this bigram + // if discretizedFrequency < 0. + return discretizedFrequency > 0 ? discretizedFrequency : 0; + } + + /* package */ static int getChildrenPosition(final PtNode ptNode, + final HashMap codePointToOneByteCodeMap) { + int positionOfChildrenPosField = ptNode.mCachedAddressAfterUpdate + + getNodeHeaderSize(ptNode, codePointToOneByteCodeMap); + if (ptNode.isTerminal()) { + // A terminal node has the frequency. + // If positionOfChildrenPosField is incorrect, we may crash when jumping to the children + // position. + positionOfChildrenPosField += FormatSpec.PTNODE_FREQUENCY_SIZE; + } + return null == ptNode.mChildren ? FormatSpec.NO_CHILDREN_ADDRESS + : ptNode.mChildren.mCachedAddressAfterUpdate - positionOfChildrenPosField; + } + + /** + * Write a PtNodeArray. The PtNodeArray is expected to have its final position cached. + * + * @param dict the dictionary the node array is a part of (for relative offsets). + * @param dictEncoder the dictionary encoder. + * @param ptNodeArray the node array to write. + * @param codePointToOneByteCodeMap the map to convert the code points. + */ + /* package */ static void writePlacedPtNodeArray(final FusionDictionary dict, + final DictEncoder dictEncoder, final PtNodeArray ptNodeArray, + final HashMap codePointToOneByteCodeMap) { + // TODO: Make the code in common with BinaryDictIOUtils#writePtNode + dictEncoder.setPosition(ptNodeArray.mCachedAddressAfterUpdate); + + final int ptNodeCount = ptNodeArray.mData.size(); + dictEncoder.writePtNodeCount(ptNodeCount); + for (int i = 0; i < ptNodeCount; ++i) { + final PtNode ptNode = ptNodeArray.mData.get(i); + if (dictEncoder.getPosition() != ptNode.mCachedAddressAfterUpdate) { + throw new RuntimeException("Bug: write index is not the same as the cached address " + + "of the node : " + dictEncoder.getPosition() + " <> " + + ptNode.mCachedAddressAfterUpdate); + } + // Validity checks. + if (DBG && ptNode.getProbability() > FormatSpec.MAX_TERMINAL_FREQUENCY) { + throw new RuntimeException("A node has a frequency > " + + FormatSpec.MAX_TERMINAL_FREQUENCY + + " : " + ptNode.mProbabilityInfo.toString()); + } + dictEncoder.writePtNode(ptNode, dict, codePointToOneByteCodeMap); + } + if (dictEncoder.getPosition() != ptNodeArray.mCachedAddressAfterUpdate + + ptNodeArray.mCachedSize) { + throw new RuntimeException("Not the same size : written " + + (dictEncoder.getPosition() - ptNodeArray.mCachedAddressAfterUpdate) + + " bytes from a node that should have " + ptNodeArray.mCachedSize + " bytes"); + } + } + + /** + * Dumps a collection of useful statistics about a list of PtNode arrays. + * + * This prints purely informative stuff, like the total estimated file size, the + * number of PtNode arrays, of PtNodes, the repartition of each address size, etc + * + * @param ptNodeArrays the list of PtNode arrays. + */ + /* package */ static void showStatistics(ArrayList ptNodeArrays) { + int firstTerminalAddress = Integer.MAX_VALUE; + int lastTerminalAddress = Integer.MIN_VALUE; + int size = 0; + int ptNodes = 0; + int maxNodes = 0; + int maxRuns = 0; + for (final PtNodeArray ptNodeArray : ptNodeArrays) { + if (maxNodes < ptNodeArray.mData.size()) maxNodes = ptNodeArray.mData.size(); + for (final PtNode ptNode : ptNodeArray.mData) { + ++ptNodes; + if (ptNode.mChars.length > maxRuns) maxRuns = ptNode.mChars.length; + if (ptNode.isTerminal()) { + if (ptNodeArray.mCachedAddressAfterUpdate < firstTerminalAddress) + firstTerminalAddress = ptNodeArray.mCachedAddressAfterUpdate; + if (ptNodeArray.mCachedAddressAfterUpdate > lastTerminalAddress) + lastTerminalAddress = ptNodeArray.mCachedAddressAfterUpdate; + } + } + if (ptNodeArray.mCachedAddressAfterUpdate + ptNodeArray.mCachedSize > size) { + size = ptNodeArray.mCachedAddressAfterUpdate + ptNodeArray.mCachedSize; + } + } + final int[] ptNodeCounts = new int[maxNodes + 1]; + final int[] runCounts = new int[maxRuns + 1]; + for (final PtNodeArray ptNodeArray : ptNodeArrays) { + ++ptNodeCounts[ptNodeArray.mData.size()]; + for (final PtNode ptNode : ptNodeArray.mData) { + ++runCounts[ptNode.mChars.length]; + } + } + + MakedictLog.i("Statistics:\n" + + " Total file size " + size + "\n" + + " " + ptNodeArrays.size() + " node arrays\n" + + " " + ptNodes + " PtNodes (" + ((float)ptNodes / ptNodeArrays.size()) + + " PtNodes per node)\n" + + " First terminal at " + firstTerminalAddress + "\n" + + " Last terminal at " + lastTerminalAddress + "\n" + + " PtNode stats : max = " + maxNodes); + } + + /** + * Writes a file header to an output stream. + * + * @param destination the stream to write the file header to. + * @param dict the dictionary to write. + * @param formatOptions file format options. + * @param codePointOccurrenceArray code points ordered by occurrence count. + * @return the size of the header. + */ + /* package */ static int writeDictionaryHeader(final OutputStream destination, + final FusionDictionary dict, final FormatOptions formatOptions, + final ArrayList> codePointOccurrenceArray) + throws IOException, UnsupportedFormatException { + final int version = formatOptions.mVersion; + if ((version >= FormatSpec.MINIMUM_SUPPORTED_STATIC_VERSION && + version <= FormatSpec.MAXIMUM_SUPPORTED_STATIC_VERSION) || ( + version >= FormatSpec.MINIMUM_SUPPORTED_DYNAMIC_VERSION && + version <= FormatSpec.MAXIMUM_SUPPORTED_DYNAMIC_VERSION)) { + // Dictionary is valid + } else { + throw new UnsupportedFormatException("Requested file format version " + version + + ", but this implementation only supports static versions " + + FormatSpec.MINIMUM_SUPPORTED_STATIC_VERSION + " through " + + FormatSpec.MAXIMUM_SUPPORTED_STATIC_VERSION + " and dynamic versions " + + FormatSpec.MINIMUM_SUPPORTED_DYNAMIC_VERSION + " through " + + FormatSpec.MAXIMUM_SUPPORTED_DYNAMIC_VERSION); + } + + ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256); + + // The magic number in big-endian order. + // Magic number for all versions. + headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 24))); + headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 16))); + headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 8))); + headerBuffer.write((byte) (0xFF & FormatSpec.MAGIC_NUMBER)); + // Dictionary version. + headerBuffer.write((byte) (0xFF & (version >> 8))); + headerBuffer.write((byte) (0xFF & version)); + + // Options flags + // TODO: Remove this field. + final int options = 0; + headerBuffer.write((byte) (0xFF & (options >> 8))); + headerBuffer.write((byte) (0xFF & options)); + final int headerSizeOffset = headerBuffer.size(); + // Placeholder to be written later with header size. + for (int i = 0; i < 4; ++i) { + headerBuffer.write(0); + } + // Write out the options. + for (final String key : dict.mOptions.mAttributes.keySet()) { + final String value = dict.mOptions.mAttributes.get(key); + CharEncoding.writeString(headerBuffer, key, null); + CharEncoding.writeString(headerBuffer, value, null); + } + // Write out the codePointTable if there is codePointOccurrenceArray. + if (codePointOccurrenceArray != null) { + final String codePointTableString = + encodeCodePointTable(codePointOccurrenceArray); + CharEncoding.writeString(headerBuffer, DictionaryHeader.CODE_POINT_TABLE_KEY, null); + CharEncoding.writeString(headerBuffer, codePointTableString, null); + } + final int size = headerBuffer.size(); + final byte[] bytes = headerBuffer.toByteArray(); + // Write out the header size. + bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24)); + bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16)); + bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8)); + bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0)); + destination.write(bytes); + + headerBuffer.close(); + return size; + } + + static final class CodePointTable { + final HashMap mCodePointToOneByteCodeMap; + final ArrayList> mCodePointOccurrenceArray; + + // Let code point table empty for version 200 dictionary which used in test + CodePointTable() { + mCodePointToOneByteCodeMap = null; + mCodePointOccurrenceArray = null; + } + + CodePointTable(final HashMap codePointToOneByteCodeMap, + final ArrayList> codePointOccurrenceArray) { + mCodePointToOneByteCodeMap = codePointToOneByteCodeMap; + mCodePointOccurrenceArray = codePointOccurrenceArray; + } + } + + private static String encodeCodePointTable( + final ArrayList> codePointOccurrenceArray) { + final StringBuilder codePointTableString = new StringBuilder(); + int currentCodePointTableIndex = FormatSpec.MINIMAL_ONE_BYTE_CHARACTER_VALUE; + for (final Entry entry : codePointOccurrenceArray) { + // Native reads the table as a string + codePointTableString.appendCodePoint(entry.getKey()); + if (FormatSpec.MAXIMAL_ONE_BYTE_CHARACTER_VALUE < ++currentCodePointTableIndex) { + break; + } + } + return codePointTableString.toString(); + } +} -- cgit v1.2.3-83-g751a