aboutsummaryrefslogtreecommitdiffstats
path: root/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java
diff options
context:
space:
mode:
authorKen Wakasa <kwakasa@google.com>2013-08-15 08:54:29 +0000
committerKen Wakasa <kwakasa@google.com>2013-08-15 08:54:29 +0000
commit117f18e844f83036f3523aa2e721894bac16739d (patch)
tree5f6fab1bd931e90f55798dd4b402cccb13894337 /java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java
parent4c63d0614e7ed7aea4bcbab3a17090d841661d92 (diff)
downloadlatinime-117f18e844f83036f3523aa2e721894bac16739d.tar.gz
latinime-117f18e844f83036f3523aa2e721894bac16739d.tar.xz
latinime-117f18e844f83036f3523aa2e721894bac16739d.zip
Revert "[Refactor] Divide BinaryDictInputOutput into BinaryDictInputUtils and BinaryDictOutputUtils."
This reverts commit 4c63d0614e7ed7aea4bcbab3a17090d841661d92. Change-Id: I1fa277d720bab4d895259df7d6d82eebfa5eb6c5
Diffstat (limited to 'java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java')
-rw-r--r--java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java1775
1 files changed, 1775 insertions, 0 deletions
diff --git a/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java b/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java
new file mode 100644
index 000000000..a54661058
--- /dev/null
+++ b/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java
@@ -0,0 +1,1775 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package com.android.inputmethod.latin.makedict;
+
+import com.android.inputmethod.annotations.UsedForTesting;
+import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader;
+import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
+import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
+import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions;
+import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
+import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
+
+import java.io.ByteArrayOutputStream;
+import java.io.File;
+import java.io.FileInputStream;
+import java.io.FileNotFoundException;
+import java.io.IOException;
+import java.io.OutputStream;
+import java.nio.ByteBuffer;
+import java.nio.channels.FileChannel;
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.HashMap;
+import java.util.Iterator;
+import java.util.Map;
+import java.util.TreeMap;
+
+/**
+ * Reads and writes XML files for a FusionDictionary.
+ *
+ * All the methods in this class are static.
+ */
+public final class BinaryDictInputOutput {
+
+ private static final boolean DBG = MakedictLog.DBG;
+
+ // Arbitrary limit to how much passes we consider address size compression should
+ // terminate in. At the time of this writing, our largest dictionary completes
+ // compression in five passes.
+ // If the number of passes exceeds this number, makedict bails with an exception on
+ // suspicion that a bug might be causing an infinite loop.
+ private static final int MAX_PASSES = 24;
+ private static final int MAX_JUMPS = 12;
+
+ @UsedForTesting
+ public interface FusionDictionaryBufferInterface {
+ public int readUnsignedByte();
+ public int readUnsignedShort();
+ public int readUnsignedInt24();
+ public int readInt();
+ public int position();
+ public void position(int newPosition);
+ public void put(final byte b);
+ public int limit();
+ @UsedForTesting
+ public int capacity();
+ }
+
+ public static final class ByteBufferWrapper implements FusionDictionaryBufferInterface {
+ private ByteBuffer mBuffer;
+
+ public ByteBufferWrapper(final ByteBuffer buffer) {
+ mBuffer = buffer;
+ }
+
+ @Override
+ public int readUnsignedByte() {
+ return mBuffer.get() & 0xFF;
+ }
+
+ @Override
+ public int readUnsignedShort() {
+ return mBuffer.getShort() & 0xFFFF;
+ }
+
+ @Override
+ public int readUnsignedInt24() {
+ final int retval = readUnsignedByte();
+ return (retval << 16) + readUnsignedShort();
+ }
+
+ @Override
+ public int readInt() {
+ return mBuffer.getInt();
+ }
+
+ @Override
+ public int position() {
+ return mBuffer.position();
+ }
+
+ @Override
+ public void position(int newPos) {
+ mBuffer.position(newPos);
+ }
+
+ @Override
+ public void put(final byte b) {
+ mBuffer.put(b);
+ }
+
+ @Override
+ public int limit() {
+ return mBuffer.limit();
+ }
+
+ @Override
+ public int capacity() {
+ return mBuffer.capacity();
+ }
+ }
+
+ /**
+ * A class grouping utility function for our specific character encoding.
+ */
+ static final class CharEncoding {
+ private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
+ private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF;
+
+ /**
+ * Helper method to find out whether this code fits on one byte
+ */
+ private static boolean fitsOnOneByte(final int character) {
+ return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE
+ && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
+ }
+
+ /**
+ * Compute the size of a character given its character code.
+ *
+ * Char format is:
+ * 1 byte = bbbbbbbb match
+ * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
+ * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
+ * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
+ * 00011111 would be outside unicode.
+ * else: iso-latin-1 code
+ * This allows for the whole unicode range to be encoded, including chars outside of
+ * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
+ * characters which should never happen anyway (and still work, but take 3 bytes).
+ *
+ * @param character the character code.
+ * @return the size in binary encoded-form, either 1 or 3 bytes.
+ */
+ static int getCharSize(final int character) {
+ // See char encoding in FusionDictionary.java
+ if (fitsOnOneByte(character)) return 1;
+ if (FormatSpec.INVALID_CHARACTER == character) return 1;
+ return 3;
+ }
+
+ /**
+ * Compute the byte size of a character array.
+ */
+ private static int getCharArraySize(final int[] chars) {
+ int size = 0;
+ for (int character : chars) size += getCharSize(character);
+ return size;
+ }
+
+ /**
+ * Writes a char array to a byte buffer.
+ *
+ * @param codePoints the code point array to write.
+ * @param buffer the byte buffer to write to.
+ * @param index the index in buffer to write the character array to.
+ * @return the index after the last character.
+ */
+ private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) {
+ for (int codePoint : codePoints) {
+ if (1 == getCharSize(codePoint)) {
+ buffer[index++] = (byte)codePoint;
+ } else {
+ buffer[index++] = (byte)(0xFF & (codePoint >> 16));
+ buffer[index++] = (byte)(0xFF & (codePoint >> 8));
+ buffer[index++] = (byte)(0xFF & codePoint);
+ }
+ }
+ return index;
+ }
+
+ /**
+ * Writes a string with our character format to a byte buffer.
+ *
+ * This will also write the terminator byte.
+ *
+ * @param buffer the byte buffer to write to.
+ * @param origin the offset to write from.
+ * @param word the string to write.
+ * @return the size written, in bytes.
+ */
+ private static int writeString(final byte[] buffer, final int origin,
+ final String word) {
+ final int length = word.length();
+ int index = origin;
+ for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
+ final int codePoint = word.codePointAt(i);
+ if (1 == getCharSize(codePoint)) {
+ buffer[index++] = (byte)codePoint;
+ } else {
+ buffer[index++] = (byte)(0xFF & (codePoint >> 16));
+ buffer[index++] = (byte)(0xFF & (codePoint >> 8));
+ buffer[index++] = (byte)(0xFF & codePoint);
+ }
+ }
+ buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR;
+ return index - origin;
+ }
+
+ /**
+ * Writes a string with our character format to a ByteArrayOutputStream.
+ *
+ * This will also write the terminator byte.
+ *
+ * @param buffer the ByteArrayOutputStream to write to.
+ * @param word the string to write.
+ */
+ private static void writeString(final ByteArrayOutputStream buffer, final String word) {
+ final int length = word.length();
+ for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
+ final int codePoint = word.codePointAt(i);
+ if (1 == getCharSize(codePoint)) {
+ buffer.write((byte) codePoint);
+ } else {
+ buffer.write((byte) (0xFF & (codePoint >> 16)));
+ buffer.write((byte) (0xFF & (codePoint >> 8)));
+ buffer.write((byte) (0xFF & codePoint));
+ }
+ }
+ buffer.write(FormatSpec.GROUP_CHARACTERS_TERMINATOR);
+ }
+
+ /**
+ * Reads a string from a buffer. This is the converse of the above method.
+ */
+ private static String readString(final FusionDictionaryBufferInterface buffer) {
+ final StringBuilder s = new StringBuilder();
+ int character = readChar(buffer);
+ while (character != FormatSpec.INVALID_CHARACTER) {
+ s.appendCodePoint(character);
+ character = readChar(buffer);
+ }
+ return s.toString();
+ }
+
+ /**
+ * Reads a character from the buffer.
+ *
+ * This follows the character format documented earlier in this source file.
+ *
+ * @param buffer the buffer, positioned over an encoded character.
+ * @return the character code.
+ */
+ static int readChar(final FusionDictionaryBufferInterface buffer) {
+ int character = buffer.readUnsignedByte();
+ if (!fitsOnOneByte(character)) {
+ if (FormatSpec.GROUP_CHARACTERS_TERMINATOR == character) {
+ return FormatSpec.INVALID_CHARACTER;
+ }
+ character <<= 16;
+ character += buffer.readUnsignedShort();
+ }
+ return character;
+ }
+ }
+
+ /**
+ * Compute the binary size of the character array.
+ *
+ * If only one character, this is the size of this character. If many, it's the sum of their
+ * sizes + 1 byte for the terminator.
+ *
+ * @param characters the character array
+ * @return the size of the char array, including the terminator if any
+ */
+ static int getGroupCharactersSize(final int[] characters) {
+ int size = CharEncoding.getCharArraySize(characters);
+ if (characters.length > 1) size += FormatSpec.GROUP_TERMINATOR_SIZE;
+ return size;
+ }
+
+ /**
+ * Compute the binary size of the character array in a group
+ *
+ * If only one character, this is the size of this character. If many, it's the sum of their
+ * sizes + 1 byte for the terminator.
+ *
+ * @param group the group
+ * @return the size of the char array, including the terminator if any
+ */
+ private static int getGroupCharactersSize(final CharGroup group) {
+ return getGroupCharactersSize(group.mChars);
+ }
+
+ /**
+ * Compute the binary size of the group count for a node
+ * @param node the node
+ * @return the size of the group count, either 1 or 2 bytes.
+ */
+ private static int getGroupCountSize(final Node node) {
+ return BinaryDictIOUtils.getGroupCountSize(node.mData.size());
+ }
+
+ /**
+ * Compute the size of a shortcut in bytes.
+ */
+ private static int getShortcutSize(final WeightedString shortcut) {
+ int size = FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE;
+ final String word = shortcut.mWord;
+ final int length = word.length();
+ for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
+ final int codePoint = word.codePointAt(i);
+ size += CharEncoding.getCharSize(codePoint);
+ }
+ size += FormatSpec.GROUP_TERMINATOR_SIZE;
+ return size;
+ }
+
+ /**
+ * Compute the size of a shortcut list in bytes.
+ *
+ * This is known in advance and does not change according to position in the file
+ * like address lists do.
+ */
+ static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) {
+ if (null == shortcutList) return 0;
+ int size = FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
+ for (final WeightedString shortcut : shortcutList) {
+ size += getShortcutSize(shortcut);
+ }
+ return size;
+ }
+
+ /**
+ * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything.
+ *
+ * @param group the CharGroup to compute the size of.
+ * @param options file format options.
+ * @return the maximum size of the group.
+ */
+ private static int getCharGroupMaximumSize(final CharGroup group, final FormatOptions options) {
+ int size = getGroupHeaderSize(group, options);
+ // If terminal, one byte for the frequency
+ if (group.isTerminal()) size += FormatSpec.GROUP_FREQUENCY_SIZE;
+ size += FormatSpec.GROUP_MAX_ADDRESS_SIZE; // For children address
+ size += getShortcutListSize(group.mShortcutTargets);
+ if (null != group.mBigrams) {
+ size += (FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE
+ + FormatSpec.GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE)
+ * group.mBigrams.size();
+ }
+ return size;
+ }
+
+ /**
+ * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches
+ * it in the 'actualSize' member of the node.
+ *
+ * @param node the node to compute the maximum size of.
+ * @param options file format options.
+ */
+ private static void calculateNodeMaximumSize(final Node node, final FormatOptions options) {
+ int size = getGroupCountSize(node);
+ for (CharGroup g : node.mData) {
+ final int groupSize = getCharGroupMaximumSize(g, options);
+ g.mCachedSize = groupSize;
+ size += groupSize;
+ }
+ if (options.mSupportsDynamicUpdate) {
+ size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
+ }
+ node.mCachedSize = size;
+ }
+
+ /**
+ * Compute the size of the header (flag + [parent address] + characters size) of a CharGroup.
+ *
+ * @param group the group of which to compute the size of the header
+ * @param options file format options.
+ */
+ private static int getGroupHeaderSize(final CharGroup group, final FormatOptions options) {
+ if (BinaryDictIOUtils.supportsDynamicUpdate(options)) {
+ return FormatSpec.GROUP_FLAGS_SIZE + FormatSpec.PARENT_ADDRESS_SIZE
+ + getGroupCharactersSize(group);
+ } else {
+ return FormatSpec.GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
+ }
+ }
+
+ /**
+ * Compute the size, in bytes, that an address will occupy.
+ *
+ * This can be used either for children addresses (which are always positive) or for
+ * attribute, which may be positive or negative but
+ * store their sign bit separately.
+ *
+ * @param address the address
+ * @return the byte size.
+ */
+ static int getByteSize(final int address) {
+ assert(address <= FormatSpec.UINT24_MAX);
+ if (!BinaryDictIOUtils.hasChildrenAddress(address)) {
+ return 0;
+ } else if (Math.abs(address) <= FormatSpec.UINT8_MAX) {
+ return 1;
+ } else if (Math.abs(address) <= FormatSpec.UINT16_MAX) {
+ return 2;
+ } else {
+ return 3;
+ }
+ }
+
+ // End utility methods.
+
+ // This method is responsible for finding a nice ordering of the nodes that favors run-time
+ // cache performance and dictionary size.
+ /* package for tests */ static ArrayList<Node> flattenTree(final Node root) {
+ final int treeSize = FusionDictionary.countCharGroups(root);
+ MakedictLog.i("Counted nodes : " + treeSize);
+ final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize);
+ return flattenTreeInner(flatTree, root);
+ }
+
+ private static ArrayList<Node> flattenTreeInner(final ArrayList<Node> list, final Node node) {
+ // Removing the node is necessary if the tails are merged, because we would then
+ // add the same node several times when we only want it once. A number of places in
+ // the code also depends on any node being only once in the list.
+ // Merging tails can only be done if there are no attributes. Searching for attributes
+ // in LatinIME code depends on a total breadth-first ordering, which merging tails
+ // breaks. If there are no attributes, it should be fine (and reduce the file size)
+ // to merge tails, and removing the node from the list would be necessary. However,
+ // we don't merge tails because breaking the breadth-first ordering would result in
+ // extreme overhead at bigram lookup time (it would make the search function O(n) instead
+ // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty
+ // high).
+ // If no nodes are ever merged, we can't have the same node twice in the list, hence
+ // searching for duplicates in unnecessary. It is also very performance consuming,
+ // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making
+ // this simple list.remove operation O(n*n) overall. On Android this overhead is very
+ // high.
+ // For future reference, the code to remove duplicate is a simple : list.remove(node);
+ list.add(node);
+ final ArrayList<CharGroup> branches = node.mData;
+ final int nodeSize = branches.size();
+ for (CharGroup group : branches) {
+ if (null != group.mChildren) flattenTreeInner(list, group.mChildren);
+ }
+ return list;
+ }
+
+ /**
+ * Get the offset from a position inside a current node to a target node, during update.
+ *
+ * If the current node is before the target node, the target node has not been updated yet,
+ * so we should return the offset from the old position of the current node to the old position
+ * of the target node. If on the other hand the target is before the current node, it already
+ * has been updated, so we should return the offset from the new position in the current node
+ * to the new position in the target node.
+ * @param currentNode the node containing the CharGroup where the offset will be written
+ * @param offsetFromStartOfCurrentNode the offset, in bytes, from the start of currentNode
+ * @param targetNode the target node to get the offset to
+ * @return the offset to the target node
+ */
+ private static int getOffsetToTargetNodeDuringUpdate(final Node currentNode,
+ final int offsetFromStartOfCurrentNode, final Node targetNode) {
+ final boolean isTargetBeforeCurrent = (targetNode.mCachedAddressBeforeUpdate
+ < currentNode.mCachedAddressBeforeUpdate);
+ if (isTargetBeforeCurrent) {
+ return targetNode.mCachedAddressAfterUpdate
+ - (currentNode.mCachedAddressAfterUpdate + offsetFromStartOfCurrentNode);
+ } else {
+ return targetNode.mCachedAddressBeforeUpdate
+ - (currentNode.mCachedAddressBeforeUpdate + offsetFromStartOfCurrentNode);
+ }
+ }
+
+ /**
+ * Get the offset from a position inside a current node to a target CharGroup, during update.
+ * @param currentNode the node containing the CharGroup where the offset will be written
+ * @param offsetFromStartOfCurrentNode the offset, in bytes, from the start of currentNode
+ * @param targetCharGroup the target CharGroup to get the offset to
+ * @return the offset to the target CharGroup
+ */
+ // TODO: is there any way to factorize this method with the one above?
+ private static int getOffsetToTargetCharGroupDuringUpdate(final Node currentNode,
+ final int offsetFromStartOfCurrentNode, final CharGroup targetCharGroup) {
+ final int oldOffsetBasePoint = currentNode.mCachedAddressBeforeUpdate
+ + offsetFromStartOfCurrentNode;
+ final boolean isTargetBeforeCurrent = (targetCharGroup.mCachedAddressBeforeUpdate
+ < oldOffsetBasePoint);
+ // If the target is before the current node, then its address has already been updated.
+ // We can use the AfterUpdate member, and compare it to our own member after update.
+ // Otherwise, the AfterUpdate member is not updated yet, so we need to use the BeforeUpdate
+ // member, and of course we have to compare this to our own address before update.
+ if (isTargetBeforeCurrent) {
+ final int newOffsetBasePoint = currentNode.mCachedAddressAfterUpdate
+ + offsetFromStartOfCurrentNode;
+ return targetCharGroup.mCachedAddressAfterUpdate - newOffsetBasePoint;
+ } else {
+ return targetCharGroup.mCachedAddressBeforeUpdate - oldOffsetBasePoint;
+ }
+ }
+
+ /**
+ * Computes the actual node size, based on the cached addresses of the children nodes.
+ *
+ * Each node stores its tentative address. During dictionary address computing, these
+ * are not final, but they can be used to compute the node size (the node size depends
+ * on the address of the children because the number of bytes necessary to store an
+ * address depends on its numeric value. The return value indicates whether the node
+ * contents (as in, any of the addresses stored in the cache fields) have changed with
+ * respect to their previous value.
+ *
+ * @param node the node to compute the size of.
+ * @param dict the dictionary in which the word/attributes are to be found.
+ * @param formatOptions file format options.
+ * @return false if none of the cached addresses inside the node changed, true otherwise.
+ */
+ private static boolean computeActualNodeSize(final Node node, final FusionDictionary dict,
+ final FormatOptions formatOptions) {
+ boolean changed = false;
+ int size = getGroupCountSize(node);
+ for (CharGroup group : node.mData) {
+ group.mCachedAddressAfterUpdate = node.mCachedAddressAfterUpdate + size;
+ if (group.mCachedAddressAfterUpdate != group.mCachedAddressBeforeUpdate) {
+ changed = true;
+ }
+ int groupSize = getGroupHeaderSize(group, formatOptions);
+ if (group.isTerminal()) groupSize += FormatSpec.GROUP_FREQUENCY_SIZE;
+ if (null == group.mChildren && formatOptions.mSupportsDynamicUpdate) {
+ groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
+ } else if (null != group.mChildren) {
+ if (formatOptions.mSupportsDynamicUpdate) {
+ groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
+ } else {
+ groupSize += getByteSize(getOffsetToTargetNodeDuringUpdate(node,
+ groupSize + size, group.mChildren));
+ }
+ }
+ groupSize += getShortcutListSize(group.mShortcutTargets);
+ if (null != group.mBigrams) {
+ for (WeightedString bigram : group.mBigrams) {
+ final int offset = getOffsetToTargetCharGroupDuringUpdate(node,
+ groupSize + size + FormatSpec.GROUP_FLAGS_SIZE,
+ FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord));
+ groupSize += getByteSize(offset) + FormatSpec.GROUP_FLAGS_SIZE;
+ }
+ }
+ group.mCachedSize = groupSize;
+ size += groupSize;
+ }
+ if (formatOptions.mSupportsDynamicUpdate) {
+ size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
+ }
+ if (node.mCachedSize != size) {
+ node.mCachedSize = size;
+ changed = true;
+ }
+ return changed;
+ }
+
+ /**
+ * Initializes the cached addresses of nodes from their size.
+ *
+ * @param flatNodes the array of nodes.
+ * @param formatOptions file format options.
+ * @return the byte size of the entire stack.
+ */
+ private static int initializeNodesCachedAddresses(final ArrayList<Node> flatNodes,
+ final FormatOptions formatOptions) {
+ int nodeOffset = 0;
+ for (final Node n : flatNodes) {
+ n.mCachedAddressBeforeUpdate = nodeOffset;
+ int groupCountSize = getGroupCountSize(n);
+ int groupOffset = 0;
+ for (final CharGroup g : n.mData) {
+ g.mCachedAddressBeforeUpdate = g.mCachedAddressAfterUpdate =
+ groupCountSize + nodeOffset + groupOffset;
+ groupOffset += g.mCachedSize;
+ }
+ final int nodeSize = groupCountSize + groupOffset
+ + (formatOptions.mSupportsDynamicUpdate
+ ? FormatSpec.FORWARD_LINK_ADDRESS_SIZE : 0);
+ nodeOffset += n.mCachedSize;
+ }
+ return nodeOffset;
+ }
+
+ /**
+ * Updates the cached addresses of nodes after recomputing their new positions.
+ *
+ * @param flatNodes the array of nodes.
+ */
+ private static void updateNodeCachedAddresses(final ArrayList<Node> flatNodes) {
+ for (final Node n : flatNodes) {
+ n.mCachedAddressBeforeUpdate = n.mCachedAddressAfterUpdate;
+ for (final CharGroup g : n.mData) {
+ g.mCachedAddressBeforeUpdate = g.mCachedAddressAfterUpdate;
+ }
+ }
+ }
+
+ /**
+ * Compute the cached parent addresses after all has been updated.
+ *
+ * The parent addresses are used by some binary formats at write-to-disk time. Not all formats
+ * need them. In particular, version 2 does not need them, and version 3 does.
+ *
+ * @param flatNodes the flat array of nodes to fill in
+ */
+ private static void computeParentAddresses(final ArrayList<Node> flatNodes) {
+ for (final Node node : flatNodes) {
+ for (final CharGroup group : node.mData) {
+ if (null != group.mChildren) {
+ // Assign my address to children's parent address
+ // Here BeforeUpdate and AfterUpdate addresses have the same value, so it
+ // does not matter which we use.
+ group.mChildren.mCachedParentAddress = group.mCachedAddressAfterUpdate
+ - group.mChildren.mCachedAddressAfterUpdate;
+ }
+ }
+ }
+ }
+
+ /**
+ * Compute the addresses and sizes of an ordered node array.
+ *
+ * This method takes a node array and will update its cached address and size values
+ * so that they can be written into a file. It determines the smallest size each of the
+ * nodes can be given the addresses of its children and attributes, and store that into
+ * each node.
+ * The order of the node is given by the order of the array. This method makes no effort
+ * to find a good order; it only mechanically computes the size this order results in.
+ *
+ * @param dict the dictionary
+ * @param flatNodes the ordered array of nodes
+ * @param formatOptions file format options.
+ * @return the same array it was passed. The nodes have been updated for address and size.
+ */
+ private static ArrayList<Node> computeAddresses(final FusionDictionary dict,
+ final ArrayList<Node> flatNodes, final FormatOptions formatOptions) {
+ // First get the worst possible sizes and offsets
+ for (final Node n : flatNodes) calculateNodeMaximumSize(n, formatOptions);
+ final int offset = initializeNodesCachedAddresses(flatNodes, formatOptions);
+
+ MakedictLog.i("Compressing the array addresses. Original size : " + offset);
+ MakedictLog.i("(Recursively seen size : " + offset + ")");
+
+ int passes = 0;
+ boolean changesDone = false;
+ do {
+ changesDone = false;
+ int nodeStartOffset = 0;
+ for (final Node n : flatNodes) {
+ n.mCachedAddressAfterUpdate = nodeStartOffset;
+ final int oldNodeSize = n.mCachedSize;
+ final boolean changed = computeActualNodeSize(n, dict, formatOptions);
+ final int newNodeSize = n.mCachedSize;
+ if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!");
+ nodeStartOffset += newNodeSize;
+ changesDone |= changed;
+ }
+ updateNodeCachedAddresses(flatNodes);
+ ++passes;
+ if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
+ } while (changesDone);
+
+ if (formatOptions.mSupportsDynamicUpdate) {
+ computeParentAddresses(flatNodes);
+ }
+ final Node lastNode = flatNodes.get(flatNodes.size() - 1);
+ MakedictLog.i("Compression complete in " + passes + " passes.");
+ MakedictLog.i("After address compression : "
+ + (lastNode.mCachedAddressAfterUpdate + lastNode.mCachedSize));
+
+ return flatNodes;
+ }
+
+ /**
+ * Sanity-checking method.
+ *
+ * This method checks an array of node for juxtaposition, that is, it will do
+ * nothing if each node's cached address is actually the previous node's address
+ * plus the previous node's size.
+ * If this is not the case, it will throw an exception.
+ *
+ * @param array the array node to check
+ */
+ private static void checkFlatNodeArray(final ArrayList<Node> array) {
+ int offset = 0;
+ int index = 0;
+ for (final Node n : array) {
+ // BeforeUpdate and AfterUpdate addresses are the same here, so it does not matter
+ // which we use.
+ if (n.mCachedAddressAfterUpdate != offset) {
+ throw new RuntimeException("Wrong address for node " + index
+ + " : expected " + offset + ", got " + n.mCachedAddressAfterUpdate);
+ }
+ ++index;
+ offset += n.mCachedSize;
+ }
+ }
+
+ /**
+ * Helper method to write a variable-size address to a file.
+ *
+ * @param buffer the buffer to write to.
+ * @param index the index in the buffer to write the address to.
+ * @param address the address to write.
+ * @return the size in bytes the address actually took.
+ */
+ private static int writeVariableAddress(final byte[] buffer, int index, final int address) {
+ switch (getByteSize(address)) {
+ case 1:
+ buffer[index++] = (byte)address;
+ return 1;
+ case 2:
+ buffer[index++] = (byte)(0xFF & (address >> 8));
+ buffer[index++] = (byte)(0xFF & address);
+ return 2;
+ case 3:
+ buffer[index++] = (byte)(0xFF & (address >> 16));
+ buffer[index++] = (byte)(0xFF & (address >> 8));
+ buffer[index++] = (byte)(0xFF & address);
+ return 3;
+ case 0:
+ return 0;
+ default:
+ throw new RuntimeException("Address " + address + " has a strange size");
+ }
+ }
+
+ /**
+ * Helper method to write a variable-size signed address to a file.
+ *
+ * @param buffer the buffer to write to.
+ * @param index the index in the buffer to write the address to.
+ * @param address the address to write.
+ * @return the size in bytes the address actually took.
+ */
+ private static int writeVariableSignedAddress(final byte[] buffer, int index,
+ final int address) {
+ if (!BinaryDictIOUtils.hasChildrenAddress(address)) {
+ buffer[index] = buffer[index + 1] = buffer[index + 2] = 0;
+ } else {
+ final int absAddress = Math.abs(address);
+ buffer[index++] =
+ (byte)((address < 0 ? FormatSpec.MSB8 : 0) | (0xFF & (absAddress >> 16)));
+ buffer[index++] = (byte)(0xFF & (absAddress >> 8));
+ buffer[index++] = (byte)(0xFF & absAddress);
+ }
+ return 3;
+ }
+
+ /**
+ * Makes the flag value for a char group.
+ *
+ * @param hasMultipleChars whether the group has multiple chars.
+ * @param isTerminal whether the group is terminal.
+ * @param childrenAddressSize the size of a children address.
+ * @param hasShortcuts whether the group has shortcuts.
+ * @param hasBigrams whether the group has bigrams.
+ * @param isNotAWord whether the group is not a word.
+ * @param isBlackListEntry whether the group is a blacklist entry.
+ * @param formatOptions file format options.
+ * @return the flags
+ */
+ static int makeCharGroupFlags(final boolean hasMultipleChars, final boolean isTerminal,
+ final int childrenAddressSize, final boolean hasShortcuts, final boolean hasBigrams,
+ final boolean isNotAWord, final boolean isBlackListEntry,
+ final FormatOptions formatOptions) {
+ byte flags = 0;
+ if (hasMultipleChars) flags |= FormatSpec.FLAG_HAS_MULTIPLE_CHARS;
+ if (isTerminal) flags |= FormatSpec.FLAG_IS_TERMINAL;
+ if (formatOptions.mSupportsDynamicUpdate) {
+ flags |= FormatSpec.FLAG_IS_NOT_MOVED;
+ } else if (true) {
+ switch (childrenAddressSize) {
+ case 1:
+ flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE;
+ break;
+ case 2:
+ flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES;
+ break;
+ case 3:
+ flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES;
+ break;
+ case 0:
+ flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS;
+ break;
+ default:
+ throw new RuntimeException("Node with a strange address");
+ }
+ }
+ if (hasShortcuts) flags |= FormatSpec.FLAG_HAS_SHORTCUT_TARGETS;
+ if (hasBigrams) flags |= FormatSpec.FLAG_HAS_BIGRAMS;
+ if (isNotAWord) flags |= FormatSpec.FLAG_IS_NOT_A_WORD;
+ if (isBlackListEntry) flags |= FormatSpec.FLAG_IS_BLACKLISTED;
+ return flags;
+ }
+
+ private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress,
+ final int childrenOffset, final FormatOptions formatOptions) {
+ return (byte) makeCharGroupFlags(group.mChars.length > 1, group.mFrequency >= 0,
+ getByteSize(childrenOffset), group.mShortcutTargets != null, group.mBigrams != null,
+ group.mIsNotAWord, group.mIsBlacklistEntry, formatOptions);
+ }
+
+ /**
+ * Makes the flag value for a bigram.
+ *
+ * @param more whether there are more bigrams after this one.
+ * @param offset the offset of the bigram.
+ * @param bigramFrequency the frequency of the bigram, 0..255.
+ * @param unigramFrequency the unigram frequency of the same word, 0..255.
+ * @param word the second bigram, for debugging purposes
+ * @return the flags
+ */
+ private static final int makeBigramFlags(final boolean more, final int offset,
+ int bigramFrequency, final int unigramFrequency, final String word) {
+ int bigramFlags = (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0)
+ + (offset < 0 ? FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0);
+ switch (getByteSize(offset)) {
+ case 1:
+ bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE;
+ break;
+ case 2:
+ bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES;
+ break;
+ case 3:
+ bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES;
+ break;
+ default:
+ throw new RuntimeException("Strange offset size");
+ }
+ if (unigramFrequency > bigramFrequency) {
+ MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word
+ + "\". Bigram freq is " + bigramFrequency + ", unigram freq for "
+ + word + " is " + unigramFrequency);
+ bigramFrequency = unigramFrequency;
+ }
+ // We compute the difference between 255 (which means probability = 1) and the
+ // unigram score. We split this into a number of discrete steps.
+ // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15
+ // represents an increase of 16 steps: a value of 15 will be interpreted as the median
+ // value of the 16th step. In all justice, if the bigram frequency is low enough to be
+ // rounded below the first step (which means it is less than half a step higher than the
+ // unigram frequency) then the unigram frequency itself is the best approximation of the
+ // bigram freq that we could possibly supply, hence we should *not* include this bigram
+ // in the file at all.
+ // until this is done, we'll write 0 and slightly overestimate this case.
+ // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step
+ // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to
+ // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the
+ // step size. Then we compute the start of the first step (the one where value 0 starts)
+ // by adding half-a-step to the unigramFrequency. From there, we compute the integer
+ // number of steps to the bigramFrequency. One last thing: we want our steps to include
+ // their lower bound and exclude their higher bound so we need to have the first step
+ // start at exactly 1 unit higher than floor(unigramFreq + half a step).
+ // Note : to reconstruct the score, the dictionary reader will need to divide
+ // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step,
+ // and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best
+ // approximation. (0.5 to get the first step start, and 0.5 to get the middle of the
+ // step pointed by the discretized frequency.
+ final float stepSize =
+ (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
+ / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
+ final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f);
+ final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize);
+ // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1
+ // here. The best approximation would be the unigram freq itself, so we should not
+ // include this bigram in the dictionary. For now, register as 0, and live with the
+ // small over-estimation that we get in this case. TODO: actually remove this bigram
+ // if discretizedFrequency < 0.
+ final int finalBigramFrequency = discretizedFrequency > 0 ? discretizedFrequency : 0;
+ bigramFlags += finalBigramFrequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY;
+ return bigramFlags;
+ }
+
+ /**
+ * Makes the 2-byte value for options flags.
+ */
+ private static final int makeOptionsValue(final FusionDictionary dictionary,
+ final FormatOptions formatOptions) {
+ final DictionaryOptions options = dictionary.mOptions;
+ final boolean hasBigrams = dictionary.hasBigrams();
+ return (options.mFrenchLigatureProcessing ? FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG : 0)
+ + (options.mGermanUmlautProcessing ? FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG : 0)
+ + (hasBigrams ? FormatSpec.CONTAINS_BIGRAMS_FLAG : 0)
+ + (formatOptions.mSupportsDynamicUpdate ? FormatSpec.SUPPORTS_DYNAMIC_UPDATE : 0);
+ }
+
+ /**
+ * Makes the flag value for a shortcut.
+ *
+ * @param more whether there are more attributes after this one.
+ * @param frequency the frequency of the attribute, 0..15
+ * @return the flags
+ */
+ static final int makeShortcutFlags(final boolean more, final int frequency) {
+ return (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0)
+ + (frequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY);
+ }
+
+ private static final int writeParentAddress(final byte[] buffer, final int index,
+ final int address, final FormatOptions formatOptions) {
+ if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) {
+ if (address == FormatSpec.NO_PARENT_ADDRESS) {
+ buffer[index] = buffer[index + 1] = buffer[index + 2] = 0;
+ } else {
+ final int absAddress = Math.abs(address);
+ assert(absAddress <= FormatSpec.SINT24_MAX);
+ buffer[index] = (byte)((address < 0 ? FormatSpec.MSB8 : 0)
+ | ((absAddress >> 16) & 0xFF));
+ buffer[index + 1] = (byte)((absAddress >> 8) & 0xFF);
+ buffer[index + 2] = (byte)(absAddress & 0xFF);
+ }
+ return index + 3;
+ } else {
+ return index;
+ }
+ }
+
+ /**
+ * Write a node to memory. The node is expected to have its final position cached.
+ *
+ * This can be an empty map, but the more is inside the faster the lookups will be. It can
+ * be carried on as long as nodes do not move.
+ *
+ * @param dict the dictionary the node is a part of (for relative offsets).
+ * @param buffer the memory buffer to write to.
+ * @param node the node to write.
+ * @param formatOptions file format options.
+ * @return the address of the END of the node.
+ */
+ @SuppressWarnings("unused")
+ private static int writePlacedNode(final FusionDictionary dict, byte[] buffer,
+ final Node node, final FormatOptions formatOptions) {
+ // TODO: Make the code in common with BinaryDictIOUtils#writeCharGroup
+ int index = node.mCachedAddressAfterUpdate;
+
+ final int groupCount = node.mData.size();
+ final int countSize = getGroupCountSize(node);
+ final int parentAddress = node.mCachedParentAddress;
+ if (1 == countSize) {
+ buffer[index++] = (byte)groupCount;
+ } else if (2 == countSize) {
+ // We need to signal 2-byte size by setting the top bit of the MSB to 1, so
+ // we | 0x80 to do this.
+ buffer[index++] = (byte)((groupCount >> 8) | 0x80);
+ buffer[index++] = (byte)(groupCount & 0xFF);
+ } else {
+ throw new RuntimeException("Strange size from getGroupCountSize : " + countSize);
+ }
+ int groupAddress = index;
+ for (int i = 0; i < groupCount; ++i) {
+ final CharGroup group = node.mData.get(i);
+ if (index != group.mCachedAddressAfterUpdate) {
+ throw new RuntimeException("Bug: write index is not the same as the cached address "
+ + "of the group : " + index + " <> " + group.mCachedAddressAfterUpdate);
+ }
+ groupAddress += getGroupHeaderSize(group, formatOptions);
+ // Sanity checks.
+ if (DBG && group.mFrequency > FormatSpec.MAX_TERMINAL_FREQUENCY) {
+ throw new RuntimeException("A node has a frequency > "
+ + FormatSpec.MAX_TERMINAL_FREQUENCY
+ + " : " + group.mFrequency);
+ }
+ if (group.mFrequency >= 0) groupAddress += FormatSpec.GROUP_FREQUENCY_SIZE;
+ final int childrenOffset = null == group.mChildren
+ ? FormatSpec.NO_CHILDREN_ADDRESS
+ : group.mChildren.mCachedAddressAfterUpdate - groupAddress;
+ buffer[index++] =
+ makeCharGroupFlags(group, groupAddress, childrenOffset, formatOptions);
+
+ if (parentAddress == FormatSpec.NO_PARENT_ADDRESS) {
+ index = writeParentAddress(buffer, index, parentAddress, formatOptions);
+ } else {
+ index = writeParentAddress(buffer, index, parentAddress
+ + (node.mCachedAddressAfterUpdate - group.mCachedAddressAfterUpdate),
+ formatOptions);
+ }
+
+ index = CharEncoding.writeCharArray(group.mChars, buffer, index);
+ if (group.hasSeveralChars()) {
+ buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR;
+ }
+ if (group.mFrequency >= 0) {
+ buffer[index++] = (byte) group.mFrequency;
+ }
+
+ final int shift;
+ if (formatOptions.mSupportsDynamicUpdate) {
+ shift = writeVariableSignedAddress(buffer, index, childrenOffset);
+ } else {
+ shift = writeVariableAddress(buffer, index, childrenOffset);
+ }
+ index += shift;
+ groupAddress += shift;
+
+ // Write shortcuts
+ if (null != group.mShortcutTargets) {
+ final int indexOfShortcutByteSize = index;
+ index += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
+ groupAddress += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
+ final Iterator<WeightedString> shortcutIterator = group.mShortcutTargets.iterator();
+ while (shortcutIterator.hasNext()) {
+ final WeightedString target = shortcutIterator.next();
+ ++groupAddress;
+ int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(),
+ target.mFrequency);
+ buffer[index++] = (byte)shortcutFlags;
+ final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord);
+ index += shortcutShift;
+ groupAddress += shortcutShift;
+ }
+ final int shortcutByteSize = index - indexOfShortcutByteSize;
+ if (shortcutByteSize > 0xFFFF) {
+ throw new RuntimeException("Shortcut list too large");
+ }
+ buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8);
+ buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF);
+ }
+ // Write bigrams
+ if (null != group.mBigrams) {
+ final Iterator<WeightedString> bigramIterator = group.mBigrams.iterator();
+ while (bigramIterator.hasNext()) {
+ final WeightedString bigram = bigramIterator.next();
+ final CharGroup target =
+ FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord);
+ final int addressOfBigram = target.mCachedAddressAfterUpdate;
+ final int unigramFrequencyForThisWord = target.mFrequency;
+ ++groupAddress;
+ final int offset = addressOfBigram - groupAddress;
+ int bigramFlags = makeBigramFlags(bigramIterator.hasNext(), offset,
+ bigram.mFrequency, unigramFrequencyForThisWord, bigram.mWord);
+ buffer[index++] = (byte)bigramFlags;
+ final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset));
+ index += bigramShift;
+ groupAddress += bigramShift;
+ }
+ }
+
+ }
+ if (formatOptions.mSupportsDynamicUpdate) {
+ buffer[index] = buffer[index + 1] = buffer[index + 2]
+ = FormatSpec.NO_FORWARD_LINK_ADDRESS;
+ index += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
+ }
+ if (index != node.mCachedAddressAfterUpdate + node.mCachedSize) throw new RuntimeException(
+ "Not the same size : written "
+ + (index - node.mCachedAddressAfterUpdate) + " bytes from a node that should have "
+ + node.mCachedSize + " bytes");
+ return index;
+ }
+
+ /**
+ * Dumps a collection of useful statistics about a node array.
+ *
+ * This prints purely informative stuff, like the total estimated file size, the
+ * number of nodes, of character groups, the repartition of each address size, etc
+ *
+ * @param nodes the node array.
+ */
+ private static void showStatistics(ArrayList<Node> nodes) {
+ int firstTerminalAddress = Integer.MAX_VALUE;
+ int lastTerminalAddress = Integer.MIN_VALUE;
+ int size = 0;
+ int charGroups = 0;
+ int maxGroups = 0;
+ int maxRuns = 0;
+ for (final Node n : nodes) {
+ if (maxGroups < n.mData.size()) maxGroups = n.mData.size();
+ for (final CharGroup cg : n.mData) {
+ ++charGroups;
+ if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length;
+ if (cg.mFrequency >= 0) {
+ if (n.mCachedAddressAfterUpdate < firstTerminalAddress)
+ firstTerminalAddress = n.mCachedAddressAfterUpdate;
+ if (n.mCachedAddressAfterUpdate > lastTerminalAddress)
+ lastTerminalAddress = n.mCachedAddressAfterUpdate;
+ }
+ }
+ if (n.mCachedAddressAfterUpdate + n.mCachedSize > size) {
+ size = n.mCachedAddressAfterUpdate + n.mCachedSize;
+ }
+ }
+ final int[] groupCounts = new int[maxGroups + 1];
+ final int[] runCounts = new int[maxRuns + 1];
+ for (final Node n : nodes) {
+ ++groupCounts[n.mData.size()];
+ for (final CharGroup cg : n.mData) {
+ ++runCounts[cg.mChars.length];
+ }
+ }
+
+ MakedictLog.i("Statistics:\n"
+ + " total file size " + size + "\n"
+ + " " + nodes.size() + " nodes\n"
+ + " " + charGroups + " groups (" + ((float)charGroups / nodes.size())
+ + " groups per node)\n"
+ + " first terminal at " + firstTerminalAddress + "\n"
+ + " last terminal at " + lastTerminalAddress + "\n"
+ + " Group stats : max = " + maxGroups);
+ for (int i = 0; i < groupCounts.length; ++i) {
+ MakedictLog.i(" " + i + " : " + groupCounts[i]);
+ }
+ MakedictLog.i(" Character run stats : max = " + maxRuns);
+ for (int i = 0; i < runCounts.length; ++i) {
+ MakedictLog.i(" " + i + " : " + runCounts[i]);
+ }
+ }
+
+ /**
+ * Dumps a FusionDictionary to a file.
+ *
+ * This is the public entry point to write a dictionary to a file.
+ *
+ * @param destination the stream to write the binary data to.
+ * @param dict the dictionary to write.
+ * @param formatOptions file format options.
+ */
+ public static void writeDictionaryBinary(final OutputStream destination,
+ final FusionDictionary dict, final FormatOptions formatOptions)
+ throws IOException, UnsupportedFormatException {
+
+ // Addresses are limited to 3 bytes, but since addresses can be relative to each node, the
+ // structure itself is not limited to 16MB. However, if it is over 16MB deciding the order
+ // of the nodes becomes a quite complicated problem, because though the dictionary itself
+ // does not have a size limit, each node must still be within 16MB of all its children and
+ // parents. As long as this is ensured, the dictionary file may grow to any size.
+
+ final int version = formatOptions.mVersion;
+ if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION
+ || version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) {
+ throw new UnsupportedFormatException("Requested file format version " + version
+ + ", but this implementation only supports versions "
+ + FormatSpec.MINIMUM_SUPPORTED_VERSION + " through "
+ + FormatSpec.MAXIMUM_SUPPORTED_VERSION);
+ }
+
+ ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);
+
+ // The magic number in big-endian order.
+ // Magic number for all versions.
+ headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 24)));
+ headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 16)));
+ headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 8)));
+ headerBuffer.write((byte) (0xFF & FormatSpec.MAGIC_NUMBER));
+ // Dictionary version.
+ headerBuffer.write((byte) (0xFF & (version >> 8)));
+ headerBuffer.write((byte) (0xFF & version));
+
+ // Options flags
+ final int options = makeOptionsValue(dict, formatOptions);
+ headerBuffer.write((byte) (0xFF & (options >> 8)));
+ headerBuffer.write((byte) (0xFF & options));
+ final int headerSizeOffset = headerBuffer.size();
+ // Placeholder to be written later with header size.
+ for (int i = 0; i < 4; ++i) {
+ headerBuffer.write(0);
+ }
+ // Write out the options.
+ for (final String key : dict.mOptions.mAttributes.keySet()) {
+ final String value = dict.mOptions.mAttributes.get(key);
+ CharEncoding.writeString(headerBuffer, key);
+ CharEncoding.writeString(headerBuffer, value);
+ }
+ final int size = headerBuffer.size();
+ final byte[] bytes = headerBuffer.toByteArray();
+ // Write out the header size.
+ bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
+ bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
+ bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
+ bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
+ destination.write(bytes);
+
+ headerBuffer.close();
+
+ // Leave the choice of the optimal node order to the flattenTree function.
+ MakedictLog.i("Flattening the tree...");
+ ArrayList<Node> flatNodes = flattenTree(dict.mRoot);
+
+ MakedictLog.i("Computing addresses...");
+ computeAddresses(dict, flatNodes, formatOptions);
+ MakedictLog.i("Checking array...");
+ if (DBG) checkFlatNodeArray(flatNodes);
+
+ // Create a buffer that matches the final dictionary size.
+ final Node lastNode = flatNodes.get(flatNodes.size() - 1);
+ final int bufferSize = lastNode.mCachedAddressAfterUpdate + lastNode.mCachedSize;
+ final byte[] buffer = new byte[bufferSize];
+ int index = 0;
+
+ MakedictLog.i("Writing file...");
+ int dataEndOffset = 0;
+ for (Node n : flatNodes) {
+ dataEndOffset = writePlacedNode(dict, buffer, n, formatOptions);
+ }
+
+ if (DBG) showStatistics(flatNodes);
+
+ destination.write(buffer, 0, dataEndOffset);
+
+ destination.close();
+ MakedictLog.i("Done");
+ }
+
+
+ // Input methods: Read a binary dictionary to memory.
+ // readDictionaryBinary is the public entry point for them.
+
+ static int getChildrenAddressSize(final int optionFlags,
+ final FormatOptions formatOptions) {
+ if (formatOptions.mSupportsDynamicUpdate) return FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
+ switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) {
+ case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
+ return 1;
+ case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
+ return 2;
+ case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
+ return 3;
+ case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
+ default:
+ return 0;
+ }
+ }
+
+ static int readChildrenAddress(final FusionDictionaryBufferInterface buffer,
+ final int optionFlags, final FormatOptions options) {
+ if (options.mSupportsDynamicUpdate) {
+ final int address = buffer.readUnsignedInt24();
+ if (address == 0) return FormatSpec.NO_CHILDREN_ADDRESS;
+ if ((address & FormatSpec.MSB24) != 0) {
+ return -(address & FormatSpec.SINT24_MAX);
+ } else {
+ return address;
+ }
+ }
+ int address;
+ switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) {
+ case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
+ return buffer.readUnsignedByte();
+ case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
+ return buffer.readUnsignedShort();
+ case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
+ return buffer.readUnsignedInt24();
+ case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
+ default:
+ return FormatSpec.NO_CHILDREN_ADDRESS;
+ }
+ }
+
+ static int readParentAddress(final FusionDictionaryBufferInterface buffer,
+ final FormatOptions formatOptions) {
+ if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) {
+ final int parentAddress = buffer.readUnsignedInt24();
+ final int sign = ((parentAddress & FormatSpec.MSB24) != 0) ? -1 : 1;
+ return sign * (parentAddress & FormatSpec.SINT24_MAX);
+ } else {
+ return FormatSpec.NO_PARENT_ADDRESS;
+ }
+ }
+
+ private static final int[] CHARACTER_BUFFER = new int[FormatSpec.MAX_WORD_LENGTH];
+ public static CharGroupInfo readCharGroup(final FusionDictionaryBufferInterface buffer,
+ final int originalGroupAddress, final FormatOptions options) {
+ int addressPointer = originalGroupAddress;
+ final int flags = buffer.readUnsignedByte();
+ ++addressPointer;
+
+ final int parentAddress = readParentAddress(buffer, options);
+ if (BinaryDictIOUtils.supportsDynamicUpdate(options)) {
+ addressPointer += 3;
+ }
+
+ final int characters[];
+ if (0 != (flags & FormatSpec.FLAG_HAS_MULTIPLE_CHARS)) {
+ int index = 0;
+ int character = CharEncoding.readChar(buffer);
+ addressPointer += CharEncoding.getCharSize(character);
+ while (-1 != character) {
+ // FusionDictionary is making sure that the length of the word is smaller than
+ // MAX_WORD_LENGTH.
+ // So we'll never write past the end of CHARACTER_BUFFER.
+ CHARACTER_BUFFER[index++] = character;
+ character = CharEncoding.readChar(buffer);
+ addressPointer += CharEncoding.getCharSize(character);
+ }
+ characters = Arrays.copyOfRange(CHARACTER_BUFFER, 0, index);
+ } else {
+ final int character = CharEncoding.readChar(buffer);
+ addressPointer += CharEncoding.getCharSize(character);
+ characters = new int[] { character };
+ }
+ final int frequency;
+ if (0 != (FormatSpec.FLAG_IS_TERMINAL & flags)) {
+ ++addressPointer;
+ frequency = buffer.readUnsignedByte();
+ } else {
+ frequency = CharGroup.NOT_A_TERMINAL;
+ }
+ int childrenAddress = readChildrenAddress(buffer, flags, options);
+ if (childrenAddress != FormatSpec.NO_CHILDREN_ADDRESS) {
+ childrenAddress += addressPointer;
+ }
+ addressPointer += getChildrenAddressSize(flags, options);
+ ArrayList<WeightedString> shortcutTargets = null;
+ if (0 != (flags & FormatSpec.FLAG_HAS_SHORTCUT_TARGETS)) {
+ final int pointerBefore = buffer.position();
+ shortcutTargets = new ArrayList<WeightedString>();
+ buffer.readUnsignedShort(); // Skip the size
+ while (true) {
+ final int targetFlags = buffer.readUnsignedByte();
+ final String word = CharEncoding.readString(buffer);
+ shortcutTargets.add(new WeightedString(word,
+ targetFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY));
+ if (0 == (targetFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break;
+ }
+ addressPointer += buffer.position() - pointerBefore;
+ }
+ ArrayList<PendingAttribute> bigrams = null;
+ if (0 != (flags & FormatSpec.FLAG_HAS_BIGRAMS)) {
+ bigrams = new ArrayList<PendingAttribute>();
+ int bigramCount = 0;
+ while (bigramCount++ < FormatSpec.MAX_BIGRAMS_IN_A_GROUP) {
+ final int bigramFlags = buffer.readUnsignedByte();
+ ++addressPointer;
+ final int sign = 0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE)
+ ? 1 : -1;
+ int bigramAddress = addressPointer;
+ switch (bigramFlags & FormatSpec.MASK_ATTRIBUTE_ADDRESS_TYPE) {
+ case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
+ bigramAddress += sign * buffer.readUnsignedByte();
+ addressPointer += 1;
+ break;
+ case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
+ bigramAddress += sign * buffer.readUnsignedShort();
+ addressPointer += 2;
+ break;
+ case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
+ final int offset = (buffer.readUnsignedByte() << 16)
+ + buffer.readUnsignedShort();
+ bigramAddress += sign * offset;
+ addressPointer += 3;
+ break;
+ default:
+ throw new RuntimeException("Has bigrams with no address");
+ }
+ bigrams.add(new PendingAttribute(bigramFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY,
+ bigramAddress));
+ if (0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break;
+ }
+ if (bigramCount >= FormatSpec.MAX_BIGRAMS_IN_A_GROUP) {
+ MakedictLog.d("too many bigrams in a group.");
+ }
+ }
+ return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency,
+ parentAddress, childrenAddress, shortcutTargets, bigrams);
+ }
+
+ /**
+ * Reads and returns the char group count out of a buffer and forwards the pointer.
+ */
+ public static int readCharGroupCount(final FusionDictionaryBufferInterface buffer) {
+ final int msb = buffer.readUnsignedByte();
+ if (FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) {
+ return msb;
+ } else {
+ return ((FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8)
+ + buffer.readUnsignedByte();
+ }
+ }
+
+ // The word cache here is a stopgap bandaid to help the catastrophic performance
+ // of this method. Since it performs direct, unbuffered random access to the file and
+ // may be called hundreds of thousands of times, the resulting performance is not
+ // reasonable without some kind of cache. Thus:
+ private static TreeMap<Integer, WeightedString> wordCache =
+ new TreeMap<Integer, WeightedString>();
+ /**
+ * Finds, as a string, the word at the address passed as an argument.
+ *
+ * @param buffer the buffer to read from.
+ * @param headerSize the size of the header.
+ * @param address the address to seek.
+ * @param formatOptions file format options.
+ * @return the word with its frequency, as a weighted string.
+ */
+ /* package for tests */ static WeightedString getWordAtAddress(
+ final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
+ final FormatOptions formatOptions) {
+ final WeightedString cachedString = wordCache.get(address);
+ if (null != cachedString) return cachedString;
+
+ final WeightedString result;
+ final int originalPointer = buffer.position();
+ buffer.position(address);
+
+ if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) {
+ result = getWordAtAddressWithParentAddress(buffer, headerSize, address, formatOptions);
+ } else {
+ result = getWordAtAddressWithoutParentAddress(buffer, headerSize, address,
+ formatOptions);
+ }
+
+ wordCache.put(address, result);
+ buffer.position(originalPointer);
+ return result;
+ }
+
+ // TODO: static!? This will behave erratically when used in multi-threaded code.
+ // We need to fix this
+ private static int[] sGetWordBuffer = new int[FormatSpec.MAX_WORD_LENGTH];
+ @SuppressWarnings("unused")
+ private static WeightedString getWordAtAddressWithParentAddress(
+ final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
+ final FormatOptions options) {
+ int currentAddress = address;
+ int index = FormatSpec.MAX_WORD_LENGTH - 1;
+ int frequency = Integer.MIN_VALUE;
+ // the length of the path from the root to the leaf is limited by MAX_WORD_LENGTH
+ for (int count = 0; count < FormatSpec.MAX_WORD_LENGTH; ++count) {
+ CharGroupInfo currentInfo;
+ int loopCounter = 0;
+ do {
+ buffer.position(currentAddress + headerSize);
+ currentInfo = readCharGroup(buffer, currentAddress, options);
+ if (BinaryDictIOUtils.isMovedGroup(currentInfo.mFlags, options)) {
+ currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress;
+ }
+ if (DBG && loopCounter++ > MAX_JUMPS) {
+ MakedictLog.d("Too many jumps - probably a bug");
+ }
+ } while (BinaryDictIOUtils.isMovedGroup(currentInfo.mFlags, options));
+ if (Integer.MIN_VALUE == frequency) frequency = currentInfo.mFrequency;
+ for (int i = 0; i < currentInfo.mCharacters.length; ++i) {
+ sGetWordBuffer[index--] =
+ currentInfo.mCharacters[currentInfo.mCharacters.length - i - 1];
+ }
+ if (currentInfo.mParentAddress == FormatSpec.NO_PARENT_ADDRESS) break;
+ currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress;
+ }
+
+ return new WeightedString(
+ new String(sGetWordBuffer, index + 1, FormatSpec.MAX_WORD_LENGTH - index - 1),
+ frequency);
+ }
+
+ private static WeightedString getWordAtAddressWithoutParentAddress(
+ final FusionDictionaryBufferInterface buffer, final int headerSize, final int address,
+ final FormatOptions options) {
+ buffer.position(headerSize);
+ final int count = readCharGroupCount(buffer);
+ int groupOffset = BinaryDictIOUtils.getGroupCountSize(count);
+ final StringBuilder builder = new StringBuilder();
+ WeightedString result = null;
+
+ CharGroupInfo last = null;
+ for (int i = count - 1; i >= 0; --i) {
+ CharGroupInfo info = readCharGroup(buffer, groupOffset, options);
+ groupOffset = info.mEndAddress;
+ if (info.mOriginalAddress == address) {
+ builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
+ result = new WeightedString(builder.toString(), info.mFrequency);
+ break; // and return
+ }
+ if (BinaryDictIOUtils.hasChildrenAddress(info.mChildrenAddress)) {
+ if (info.mChildrenAddress > address) {
+ if (null == last) continue;
+ builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
+ buffer.position(last.mChildrenAddress + headerSize);
+ i = readCharGroupCount(buffer);
+ groupOffset = last.mChildrenAddress + BinaryDictIOUtils.getGroupCountSize(i);
+ last = null;
+ continue;
+ }
+ last = info;
+ }
+ if (0 == i && BinaryDictIOUtils.hasChildrenAddress(last.mChildrenAddress)) {
+ builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
+ buffer.position(last.mChildrenAddress + headerSize);
+ i = readCharGroupCount(buffer);
+ groupOffset = last.mChildrenAddress + BinaryDictIOUtils.getGroupCountSize(i);
+ last = null;
+ continue;
+ }
+ }
+ return result;
+ }
+
+ /**
+ * Reads a single node from a buffer.
+ *
+ * This methods reads the file at the current position. A node is fully expected to start at
+ * the current position.
+ * This will recursively read other nodes into the structure, populating the reverse
+ * maps on the fly and using them to keep track of already read nodes.
+ *
+ * @param buffer the buffer, correctly positioned at the start of a node.
+ * @param headerSize the size, in bytes, of the file header.
+ * @param reverseNodeMap a mapping from addresses to already read nodes.
+ * @param reverseGroupMap a mapping from addresses to already read character groups.
+ * @param options file format options.
+ * @return the read node with all his children already read.
+ */
+ private static Node readNode(final FusionDictionaryBufferInterface buffer, final int headerSize,
+ final Map<Integer, Node> reverseNodeMap, final Map<Integer, CharGroup> reverseGroupMap,
+ final FormatOptions options)
+ throws IOException {
+ final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>();
+ final int nodeOrigin = buffer.position() - headerSize;
+
+ do { // Scan the linked-list node.
+ final int nodeHeadPosition = buffer.position() - headerSize;
+ final int count = readCharGroupCount(buffer);
+ int groupOffset = nodeHeadPosition + BinaryDictIOUtils.getGroupCountSize(count);
+ for (int i = count; i > 0; --i) { // Scan the array of CharGroup.
+ CharGroupInfo info = readCharGroup(buffer, groupOffset, options);
+ if (BinaryDictIOUtils.isMovedGroup(info.mFlags, options)) continue;
+ ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets;
+ ArrayList<WeightedString> bigrams = null;
+ if (null != info.mBigrams) {
+ bigrams = new ArrayList<WeightedString>();
+ for (PendingAttribute bigram : info.mBigrams) {
+ final WeightedString word = getWordAtAddress(
+ buffer, headerSize, bigram.mAddress, options);
+ final int reconstructedFrequency =
+ reconstructBigramFrequency(word.mFrequency, bigram.mFrequency);
+ bigrams.add(new WeightedString(word.mWord, reconstructedFrequency));
+ }
+ }
+ if (BinaryDictIOUtils.hasChildrenAddress(info.mChildrenAddress)) {
+ Node children = reverseNodeMap.get(info.mChildrenAddress);
+ if (null == children) {
+ final int currentPosition = buffer.position();
+ buffer.position(info.mChildrenAddress + headerSize);
+ children = readNode(
+ buffer, headerSize, reverseNodeMap, reverseGroupMap, options);
+ buffer.position(currentPosition);
+ }
+ nodeContents.add(
+ new CharGroup(info.mCharacters, shortcutTargets, bigrams,
+ info.mFrequency,
+ 0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD),
+ 0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED), children));
+ } else {
+ nodeContents.add(
+ new CharGroup(info.mCharacters, shortcutTargets, bigrams,
+ info.mFrequency,
+ 0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD),
+ 0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED)));
+ }
+ groupOffset = info.mEndAddress;
+ }
+
+ // reach the end of the array.
+ if (options.mSupportsDynamicUpdate) {
+ final int nextAddress = buffer.readUnsignedInt24();
+ if (nextAddress >= 0 && nextAddress < buffer.limit()) {
+ buffer.position(nextAddress);
+ } else {
+ break;
+ }
+ }
+ } while (options.mSupportsDynamicUpdate &&
+ buffer.position() != FormatSpec.NO_FORWARD_LINK_ADDRESS);
+
+ final Node node = new Node(nodeContents);
+ node.mCachedAddressBeforeUpdate = nodeOrigin;
+ node.mCachedAddressAfterUpdate = nodeOrigin;
+ reverseNodeMap.put(node.mCachedAddressAfterUpdate, node);
+ return node;
+ }
+
+ /**
+ * Helper function to get the binary format version from the header.
+ * @throws IOException
+ */
+ private static int getFormatVersion(final FusionDictionaryBufferInterface buffer)
+ throws IOException {
+ final int magic = buffer.readInt();
+ if (FormatSpec.MAGIC_NUMBER == magic) return buffer.readUnsignedShort();
+ return FormatSpec.NOT_A_VERSION_NUMBER;
+ }
+
+ /**
+ * Helper function to get and validate the binary format version.
+ * @throws UnsupportedFormatException
+ * @throws IOException
+ */
+ private static int checkFormatVersion(final FusionDictionaryBufferInterface buffer)
+ throws IOException, UnsupportedFormatException {
+ final int version = getFormatVersion(buffer);
+ if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION
+ || version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) {
+ throw new UnsupportedFormatException("This file has version " + version
+ + ", but this implementation does not support versions above "
+ + FormatSpec.MAXIMUM_SUPPORTED_VERSION);
+ }
+ return version;
+ }
+
+ /**
+ * Reads a header from a buffer.
+ * @param buffer the buffer to read.
+ * @throws IOException
+ * @throws UnsupportedFormatException
+ */
+ public static FileHeader readHeader(final FusionDictionaryBufferInterface buffer)
+ throws IOException, UnsupportedFormatException {
+ final int version = checkFormatVersion(buffer);
+ final int optionsFlags = buffer.readUnsignedShort();
+
+ final HashMap<String, String> attributes = new HashMap<String, String>();
+ final int headerSize;
+ headerSize = buffer.readInt();
+
+ if (headerSize < 0) {
+ throw new UnsupportedFormatException("header size can't be negative.");
+ }
+
+ populateOptions(buffer, headerSize, attributes);
+ buffer.position(headerSize);
+
+ final FileHeader header = new FileHeader(headerSize,
+ new FusionDictionary.DictionaryOptions(attributes,
+ 0 != (optionsFlags & FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG),
+ 0 != (optionsFlags & FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG)),
+ new FormatOptions(version,
+ 0 != (optionsFlags & FormatSpec.SUPPORTS_DYNAMIC_UPDATE)));
+ return header;
+ }
+
+ /**
+ * Reads options from a buffer and populate a map with their contents.
+ *
+ * The buffer is read at the current position, so the caller must take care the pointer
+ * is in the right place before calling this.
+ */
+ public static void populateOptions(final FusionDictionaryBufferInterface buffer,
+ final int headerSize, final HashMap<String, String> options) {
+ while (buffer.position() < headerSize) {
+ final String key = CharEncoding.readString(buffer);
+ final String value = CharEncoding.readString(buffer);
+ options.put(key, value);
+ }
+ }
+
+ /**
+ * Reads a buffer and returns the memory representation of the dictionary.
+ *
+ * This high-level method takes a buffer and reads its contents, populating a
+ * FusionDictionary structure. The optional dict argument is an existing dictionary to
+ * which words from the buffer should be added. If it is null, a new dictionary is created.
+ *
+ * @param reader the reader.
+ * @param dict an optional dictionary to add words to, or null.
+ * @return the created (or merged) dictionary.
+ */
+ @UsedForTesting
+ public static FusionDictionary readDictionaryBinary(final BinaryDictReader reader,
+ final FusionDictionary dict) throws FileNotFoundException, IOException,
+ UnsupportedFormatException {
+ // clear cache
+ wordCache.clear();
+
+ // if the buffer has not been opened, open the buffer with bytebuffer.
+ if (reader.getBuffer() == null) reader.openBuffer(
+ new BinaryDictReader.FusionDictionaryBufferFromByteBufferFactory());
+ if (reader.getBuffer() == null) {
+ MakedictLog.e("Cannot open the buffer");
+ }
+
+ // Read header
+ final FileHeader header = readHeader(reader.getBuffer());
+
+ Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>();
+ Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>();
+ final Node root = readNode(reader.getBuffer(), header.mHeaderSize, reverseNodeMapping,
+ reverseGroupMapping, header.mFormatOptions);
+
+ FusionDictionary newDict = new FusionDictionary(root, header.mDictionaryOptions);
+ if (null != dict) {
+ for (final Word w : dict) {
+ if (w.mIsBlacklistEntry) {
+ newDict.addBlacklistEntry(w.mWord, w.mShortcutTargets, w.mIsNotAWord);
+ } else {
+ newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets, w.mIsNotAWord);
+ }
+ }
+ for (final Word w : dict) {
+ // By construction a binary dictionary may not have bigrams pointing to
+ // words that are not also registered as unigrams so we don't have to avoid
+ // them explicitly here.
+ for (final WeightedString bigram : w.mBigrams) {
+ newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency);
+ }
+ }
+ }
+
+ return newDict;
+ }
+
+ /**
+ * Helper method to pass a file name instead of a File object to isBinaryDictionary.
+ */
+ public static boolean isBinaryDictionary(final String filename) {
+ final File file = new File(filename);
+ return isBinaryDictionary(file);
+ }
+
+ /**
+ * Basic test to find out whether the file is a binary dictionary or not.
+ *
+ * Concretely this only tests the magic number.
+ *
+ * @param file The file to test.
+ * @return true if it's a binary dictionary, false otherwise
+ */
+ public static boolean isBinaryDictionary(final File file) {
+ FileInputStream inStream = null;
+ try {
+ inStream = new FileInputStream(file);
+ final ByteBuffer buffer = inStream.getChannel().map(
+ FileChannel.MapMode.READ_ONLY, 0, file.length());
+ final int version = getFormatVersion(new ByteBufferWrapper(buffer));
+ return (version >= FormatSpec.MINIMUM_SUPPORTED_VERSION
+ && version <= FormatSpec.MAXIMUM_SUPPORTED_VERSION);
+ } catch (FileNotFoundException e) {
+ return false;
+ } catch (IOException e) {
+ return false;
+ } finally {
+ if (inStream != null) {
+ try {
+ inStream.close();
+ } catch (IOException e) {
+ // do nothing
+ }
+ }
+ }
+ }
+
+ /**
+ * Calculate bigram frequency from compressed value
+ *
+ * @see #makeBigramFlags
+ *
+ * @param unigramFrequency
+ * @param bigramFrequency compressed frequency
+ * @return approximate bigram frequency
+ */
+ public static int reconstructBigramFrequency(final int unigramFrequency,
+ final int bigramFrequency) {
+ final float stepSize = (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
+ / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
+ final float resultFreqFloat = unigramFrequency + stepSize * (bigramFrequency + 1.0f);
+ return (int)resultFreqFloat;
+ }
+}