diff options
author | 2012-07-04 15:38:14 +0900 | |
---|---|---|
committer | 2012-07-04 15:38:21 +0900 | |
commit | c68b37964b083015967ce290991ad69d29a4055d (patch) | |
tree | 909bddc0f0c699b6344015e7ff67e31c0a1f4eff /java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java | |
parent | 1e094ac19b99c47f0b8a5108e20949ac91cfa03e (diff) | |
parent | 30a324a58dbe1e2dc47d83c1bcc0af262ab0d542 (diff) | |
download | latinime-c68b37964b083015967ce290991ad69d29a4055d.tar.gz latinime-c68b37964b083015967ce290991ad69d29a4055d.tar.xz latinime-c68b37964b083015967ce290991ad69d29a4055d.zip |
Merge remote-tracking branch 'goog/master' into mergescript
Conflicts:
CleanSpec.mk
java/Android.mk
java/res/drawable-large-hdpi/btn_keyboard_key_popup_selected_holo.9.png
java/res/drawable-large-hdpi/hint_popup_holo.9.png
java/res/drawable-large-hdpi/sym_keyboard_numsymbol_holo.png
java/res/drawable-large-hdpi/sym_keyboard_tab_holo.png
java/res/drawable-large-land-hdpi/hint_popup_holo.9.png
java/res/drawable-large-land-mdpi/hint_popup_holo.9.png
java/res/drawable-large-land-xhdpi/hint_popup_holo.9.png
java/res/drawable-large-mdpi/btn_keyboard_key_dark_normal_holo.9.png
java/res/drawable-large-mdpi/btn_keyboard_key_dark_normal_off_holo.9.png
java/res/drawable-large-mdpi/btn_keyboard_key_dark_normal_on_holo.9.png
java/res/drawable-large-mdpi/btn_keyboard_key_dark_pressed_holo.9.png
java/res/drawable-large-mdpi/btn_keyboard_key_dark_pressed_off_holo.9.png
java/res/drawable-large-mdpi/btn_keyboard_key_dark_pressed_on_holo.9.png
java/res/drawable-large-mdpi/btn_keyboard_key_light_normal_holo.9.png
java/res/drawable-large-mdpi/btn_keyboard_key_light_pressed_holo.9.png
java/res/drawable-large-mdpi/btn_keyboard_key_popup_selected_holo.9.png
java/res/drawable-large-mdpi/hint_popup_holo.9.png
java/res/drawable-large-mdpi/keyboard_background_holo.9.png
java/res/drawable-large-mdpi/keyboard_popup_panel_background_holo.9.png
java/res/drawable-large-mdpi/keyboard_suggest_strip_holo.9.png
java/res/drawable-large-mdpi/sym_keyboard_delete_holo.png
java/res/drawable-large-mdpi/sym_keyboard_num0_holo.png
java/res/drawable-large-mdpi/sym_keyboard_num1_holo.png
java/res/drawable-large-mdpi/sym_keyboard_num2_holo.png
java/res/drawable-large-mdpi/sym_keyboard_num3_holo.png
java/res/drawable-large-mdpi/sym_keyboard_num4_holo.png
java/res/drawable-large-mdpi/sym_keyboard_num5_holo.png
java/res/drawable-large-mdpi/sym_keyboard_num6_holo.png
java/res/drawable-large-mdpi/sym_keyboard_num7_holo.png
java/res/drawable-large-mdpi/sym_keyboard_num8_holo.png
java/res/drawable-large-mdpi/sym_keyboard_num9_holo.png
java/res/drawable-large-mdpi/sym_keyboard_numbpound_holo.png
java/res/drawable-large-mdpi/sym_keyboard_numbstar_holo.png
java/res/drawable-large-mdpi/sym_keyboard_numsymbol_holo.png
java/res/drawable-large-mdpi/sym_keyboard_return_holo.png
java/res/drawable-large-mdpi/sym_keyboard_settings_holo.png
java/res/drawable-large-mdpi/sym_keyboard_shift_holo.png
java/res/drawable-large-mdpi/sym_keyboard_shift_locked_holo.png
java/res/drawable-large-mdpi/sym_keyboard_space_holo.png
java/res/drawable-large-mdpi/sym_keyboard_tab_holo.png
java/res/drawable-large-mdpi/sym_keyboard_voice_holo.png
java/res/drawable-large-mdpi/sym_keyboard_voice_off_holo.png
java/res/drawable-large-xhdpi/btn_keyboard_key_popup_selected_holo.9.png
java/res/drawable-large-xhdpi/hint_popup_holo.9.png
java/res/drawable-large-xhdpi/sym_keyboard_numsymbol_holo.png
java/res/drawable-large-xhdpi/sym_keyboard_tab_holo.png
java/res/drawable-xlarge-hdpi/btn_keyboard_key_popup_selected_holo.9.png
java/res/drawable-xlarge-hdpi/hint_popup_holo.9.png
java/res/drawable-xlarge-land-hdpi/hint_popup_holo.9.png
java/res/drawable-xlarge-land-mdpi/hint_popup_holo.9.png
java/res/drawable-xlarge-land-xhdpi/hint_popup_holo.9.png
java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_normal_holo.9.png
java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_normal_off_holo.9.png
java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_normal_on_holo.9.png
java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_pressed_holo.9.png
java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_pressed_off_holo.9.png
java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_pressed_on_holo.9.png
java/res/drawable-xlarge-mdpi/btn_keyboard_key_light_normal_holo.9.png
java/res/drawable-xlarge-mdpi/btn_keyboard_key_light_pressed_holo.9.png
java/res/drawable-xlarge-mdpi/btn_keyboard_key_popup_selected_holo.9.png
java/res/drawable-xlarge-mdpi/hint_popup_holo.9.png
java/res/drawable-xlarge-mdpi/keyboard_background_holo.9.png
java/res/drawable-xlarge-mdpi/keyboard_popup_panel_background_holo.9.png
java/res/drawable-xlarge-mdpi/keyboard_suggest_strip_holo.9.png
java/res/drawable-xlarge-mdpi/sym_keyboard_delete_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_num0_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_num1_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_num2_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_num3_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_num4_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_num5_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_num6_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_num7_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_num8_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_num9_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_numbpound_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_numbstar_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_return_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_settings_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_shift_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_shift_locked_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_space_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_voice_holo.png
java/res/drawable-xlarge-mdpi/sym_keyboard_voice_off_holo.png
java/res/drawable-xlarge-xhdpi/btn_keyboard_key_popup_selected_holo.9.png
java/res/drawable-xlarge-xhdpi/hint_popup_holo.9.png
java/res/layout-xlarge/recognition_status.xml
java/res/values-af/strings.xml
java/res/values-am/strings.xml
java/res/values-ar/strings.xml
java/res/values-be/strings.xml
java/res/values-bg/strings.xml
java/res/values-ca/strings.xml
java/res/values-cs/strings.xml
java/res/values-da/strings.xml
java/res/values-de/strings.xml
java/res/values-el/strings.xml
java/res/values-en-rGB/strings.xml
java/res/values-es-rUS/strings.xml
java/res/values-es/strings.xml
java/res/values-et/strings.xml
java/res/values-fa/strings.xml
java/res/values-fi/strings.xml
java/res/values-fr/strings.xml
java/res/values-hi/strings.xml
java/res/values-hr/strings.xml
java/res/values-hu/strings.xml
java/res/values-in/strings.xml
java/res/values-it/strings.xml
java/res/values-iw/strings.xml
java/res/values-ja/strings.xml
java/res/values-ko/strings.xml
java/res/values-large/donottranslate.xml
java/res/values-lt/strings.xml
java/res/values-lv/strings.xml
java/res/values-ms/strings.xml
java/res/values-nb/strings.xml
java/res/values-nl/strings.xml
java/res/values-pl/strings.xml
java/res/values-pt-rPT/strings.xml
java/res/values-pt/strings.xml
java/res/values-rm/strings.xml
java/res/values-ro/strings.xml
java/res/values-ru/strings.xml
java/res/values-sk/strings.xml
java/res/values-sl/strings.xml
java/res/values-sr/strings.xml
java/res/values-sv/strings.xml
java/res/values-sw/strings.xml
java/res/values-sw600dp/donottranslate.xml
java/res/values-sw768dp/donottranslate.xml
java/res/values-th/strings.xml
java/res/values-tl/strings.xml
java/res/values-tr/strings.xml
java/res/values-uk/strings.xml
java/res/values-vi/strings.xml
java/res/values-xlarge/donottranslate.xml
java/res/values-zh-rCN/strings.xml
java/res/values-zh-rTW/strings.xml
java/res/values-zu/strings.xml
java/res/values/keypress-vibration-durations.xml
java/res/values/predefined-subtypes.xml
java/res/xml-large-land/kbd_popup_template.xml
java/res/xml-large/kbd_key_styles.xml
java/res/xml-large/kbd_popup_template.xml
java/res/xml-large/kbd_qwerty_f2.xml
java/res/xml-large/kbd_qwerty_row1.xml
java/res/xml-large/kbd_qwerty_row2.xml
java/res/xml-large/kbd_qwerty_row3.xml
java/res/xml-large/kbd_qwerty_row4.xml
java/res/xml-large/kbd_row3_right.xml
java/res/xml-large/kbd_rows_arabic.xml
java/res/xml-large/kbd_rows_azerty.xml
java/res/xml-large/kbd_rows_hebrew.xml
java/res/xml-large/kbd_rows_qwerty.xml
java/res/xml-large/kbd_rows_qwertz.xml
java/res/xml-large/kbd_rows_russian.xml
java/res/xml-large/kbd_rows_scandinavian.xml
java/res/xml-large/kbd_rows_serbian.xml
java/res/xml-large/kbd_rows_spanish.xml
java/res/xml-large/kbd_symbols.xml
java/res/xml-large/kbd_symbols_shift.xml
java/res/xml-sw600dp-land/kbd_more_keys_keyboard_template.xml
java/res/xml-sw600dp-land/kbd_popup_template.xml
java/res/xml-sw600dp/kbd_more_keys_keyboard_template.xml
java/res/xml-sw600dp/kbd_popup_template.xml
java/res/xml-sw600dp/kbd_row3_right.xml
java/res/xml-sw600dp/kbd_rows_qwerty.xml
java/res/xml-sw600dp/keys_comma_period.xml
java/res/xml-sw768dp-land/kbd_more_keys_keyboard_template.xml
java/res/xml-sw768dp-land/kbd_popup_template.xml
java/res/xml-sw768dp/kbd_more_keys_keyboard_template.xml
java/res/xml-sw768dp/kbd_popup_template.xml
java/res/xml-sw768dp/kbd_row3_right2.xml
java/res/xml-sw768dp/kbd_rows_qwerty.xml
java/res/xml-sw768dp/row_symbols_shift4.xml
java/res/xml-xlarge-land/kbd_popup_template.xml
java/res/xml-xlarge/kbd_key_styles.xml
java/res/xml-xlarge/kbd_popup_template.xml
java/res/xml-xlarge/kbd_qwerty_row1.xml
java/res/xml-xlarge/kbd_qwerty_row2.xml
java/res/xml-xlarge/kbd_qwerty_row3.xml
java/res/xml-xlarge/kbd_qwerty_row4.xml
java/res/xml-xlarge/kbd_row3_right2.xml
java/res/xml-xlarge/kbd_rows_arabic.xml
java/res/xml-xlarge/kbd_rows_azerty.xml
java/res/xml-xlarge/kbd_rows_hebrew.xml
java/res/xml-xlarge/kbd_rows_qwerty.xml
java/res/xml-xlarge/kbd_rows_qwertz.xml
java/res/xml-xlarge/kbd_rows_russian.xml
java/res/xml-xlarge/kbd_rows_scandinavian.xml
java/res/xml-xlarge/kbd_rows_serbian.xml
java/res/xml-xlarge/kbd_rows_spanish.xml
java/res/xml-xlarge/kbd_symbols.xml
java/res/xml-xlarge/kbd_symbols_shift.xml
java/res/xml/key_azerty_quote.xml
java/res/xml/key_f1.xml
java/res/xml/method.xml
java/src/com/android/inputmethod/compat/InputMethodServiceCompatWrapper.java
java/src/com/android/inputmethod/latin/Utils.java
native/Android.mk
Change-Id: I96e8e042f636ed8e5cc023cf8514f13121e39195
Diffstat (limited to 'java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java')
-rw-r--r-- | java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java | 1413 |
1 files changed, 1413 insertions, 0 deletions
diff --git a/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java b/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java new file mode 100644 index 000000000..2c3eee74c --- /dev/null +++ b/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java @@ -0,0 +1,1413 @@ +/* + * Copyright (C) 2011 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); you may not + * use this file except in compliance with the License. You may obtain a copy of + * the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the + * License for the specific language governing permissions and limitations under + * the License. + */ + +package com.android.inputmethod.latin.makedict; + +import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup; +import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions; +import com.android.inputmethod.latin.makedict.FusionDictionary.Node; +import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString; + +import java.io.ByteArrayOutputStream; +import java.io.FileNotFoundException; +import java.io.IOException; +import java.io.OutputStream; +import java.io.RandomAccessFile; +import java.util.ArrayList; +import java.util.Arrays; +import java.util.HashMap; +import java.util.Iterator; +import java.util.Map; +import java.util.TreeMap; + +/** + * Reads and writes XML files for a FusionDictionary. + * + * All the methods in this class are static. + */ +public class BinaryDictInputOutput { + + final static boolean DBG = MakedictLog.DBG; + + /* Node layout is as follows: + * | addressType xx : mask with MASK_GROUP_ADDRESS_TYPE + * 2 bits, 00 = no children : FLAG_GROUP_ADDRESS_TYPE_NOADDRESS + * f | 01 = 1 byte : FLAG_GROUP_ADDRESS_TYPE_ONEBYTE + * l | 10 = 2 bytes : FLAG_GROUP_ADDRESS_TYPE_TWOBYTES + * a | 11 = 3 bytes : FLAG_GROUP_ADDRESS_TYPE_THREEBYTES + * g | has several chars ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_MULTIPLE_CHARS + * s | has a terminal ? 1 bit, 1 = yes, 0 = no : FLAG_IS_TERMINAL + * | has shortcut targets ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_SHORTCUT_TARGETS + * | has bigrams ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_BIGRAMS + * + * c | IF FLAG_HAS_MULTIPLE_CHARS + * h | char, char, char, char n * (1 or 3 bytes) : use CharGroupInfo for i/o helpers + * a | end 1 byte, = 0 + * r | ELSE + * s | char 1 or 3 bytes + * | END + * + * f | + * r | IF FLAG_IS_TERMINAL + * e | frequency 1 byte + * q | + * + * c | IF 00 = FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = addressType + * h | // nothing + * i | ELSIF 01 = FLAG_GROUP_ADDRESS_TYPE_ONEBYTE == addressType + * l | children address, 1 byte + * d | ELSIF 10 = FLAG_GROUP_ADDRESS_TYPE_TWOBYTES == addressType + * r | children address, 2 bytes + * e | ELSE // 11 = FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = addressType + * n | children address, 3 bytes + * A | END + * d + * dress + * + * | IF FLAG_IS_TERMINAL && FLAG_HAS_SHORTCUT_TARGETS + * | shortcut string list + * | IF FLAG_IS_TERMINAL && FLAG_HAS_BIGRAMS + * | bigrams address list + * + * Char format is: + * 1 byte = bbbbbbbb match + * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte + * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because + * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with + * 00011111 would be outside unicode. + * else: iso-latin-1 code + * This allows for the whole unicode range to be encoded, including chars outside of + * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control + * characters which should never happen anyway (and still work, but take 3 bytes). + * + * bigram address list is: + * <flags> = | hasNext = 1 bit, 1 = yes, 0 = no : FLAG_ATTRIBUTE_HAS_NEXT + * | addressSign = 1 bit, : FLAG_ATTRIBUTE_OFFSET_NEGATIVE + * | 1 = must take -address, 0 = must take +address + * | xx : mask with MASK_ATTRIBUTE_ADDRESS_TYPE + * | addressFormat = 2 bits, 00 = unused : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE + * | 01 = 1 byte : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE + * | 10 = 2 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES + * | 11 = 3 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES + * | 4 bits : frequency : mask with FLAG_ATTRIBUTE_FREQUENCY + * <address> | IF (01 == FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE == addressFormat) + * | read 1 byte, add top 4 bits + * | ELSIF (10 == FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES == addressFormat) + * | read 2 bytes, add top 4 bits + * | ELSE // 11 == FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES == addressFormat + * | read 3 bytes, add top 4 bits + * | END + * | if (FLAG_ATTRIBUTE_OFFSET_NEGATIVE) then address = -address + * if (FLAG_ATTRIBUTE_HAS_NEXT) goto bigram_and_shortcut_address_list_is + * + * shortcut string list is: + * <byte size> = GROUP_SHORTCUT_LIST_SIZE_SIZE bytes, big-endian: size of the list, in bytes. + * <flags> = | hasNext = 1 bit, 1 = yes, 0 = no : FLAG_ATTRIBUTE_HAS_NEXT + * | reserved = 3 bits, must be 0 + * | 4 bits : frequency : mask with FLAG_ATTRIBUTE_FREQUENCY + * <shortcut> = | string of characters at the char format described above, with the terminator + * | used to signal the end of the string. + * if (FLAG_ATTRIBUTE_HAS_NEXT goto flags + */ + + private static final int VERSION_1_MAGIC_NUMBER = 0x78B1; + private static final int VERSION_2_MAGIC_NUMBER = 0x9BC13AFE; + private static final int MINIMUM_SUPPORTED_VERSION = 1; + private static final int MAXIMUM_SUPPORTED_VERSION = 2; + private static final int NOT_A_VERSION_NUMBER = -1; + private static final int FIRST_VERSION_WITH_HEADER_SIZE = 2; + + // These options need to be the same numeric values as the one in the native reading code. + private static final int GERMAN_UMLAUT_PROCESSING_FLAG = 0x1; + private static final int FRENCH_LIGATURE_PROCESSING_FLAG = 0x4; + private static final int CONTAINS_BIGRAMS_FLAG = 0x8; + + // TODO: Make this value adaptative to content data, store it in the header, and + // use it in the reading code. + private static final int MAX_WORD_LENGTH = 48; + + private static final int MASK_GROUP_ADDRESS_TYPE = 0xC0; + private static final int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00; + private static final int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40; + private static final int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80; + private static final int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0; + + private static final int FLAG_HAS_MULTIPLE_CHARS = 0x20; + + private static final int FLAG_IS_TERMINAL = 0x10; + private static final int FLAG_HAS_SHORTCUT_TARGETS = 0x08; + private static final int FLAG_HAS_BIGRAMS = 0x04; + + private static final int FLAG_ATTRIBUTE_HAS_NEXT = 0x80; + private static final int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40; + private static final int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30; + private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10; + private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20; + private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30; + private static final int FLAG_ATTRIBUTE_FREQUENCY = 0x0F; + + private static final int GROUP_CHARACTERS_TERMINATOR = 0x1F; + + private static final int GROUP_TERMINATOR_SIZE = 1; + private static final int GROUP_FLAGS_SIZE = 1; + private static final int GROUP_FREQUENCY_SIZE = 1; + private static final int GROUP_MAX_ADDRESS_SIZE = 3; + private static final int GROUP_ATTRIBUTE_FLAGS_SIZE = 1; + private static final int GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE = 3; + private static final int GROUP_SHORTCUT_LIST_SIZE_SIZE = 2; + + private static final int NO_CHILDREN_ADDRESS = Integer.MIN_VALUE; + private static final int INVALID_CHARACTER = -1; + + private static final int MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT = 0x7F; // 127 + private static final int MAX_CHARGROUPS_IN_A_NODE = 0x7FFF; // 32767 + + private static final int MAX_TERMINAL_FREQUENCY = 255; + private static final int MAX_BIGRAM_FREQUENCY = 15; + + // Arbitrary limit to how much passes we consider address size compression should + // terminate in. At the time of this writing, our largest dictionary completes + // compression in five passes. + // If the number of passes exceeds this number, makedict bails with an exception on + // suspicion that a bug might be causing an infinite loop. + private static final int MAX_PASSES = 24; + + /** + * A class grouping utility function for our specific character encoding. + */ + private static class CharEncoding { + + private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20; + private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF; + + /** + * Helper method to find out whether this code fits on one byte + */ + private static boolean fitsOnOneByte(int character) { + return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE + && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE; + } + + /** + * Compute the size of a character given its character code. + * + * Char format is: + * 1 byte = bbbbbbbb match + * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte + * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because + * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with + * 00011111 would be outside unicode. + * else: iso-latin-1 code + * This allows for the whole unicode range to be encoded, including chars outside of + * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control + * characters which should never happen anyway (and still work, but take 3 bytes). + * + * @param character the character code. + * @return the size in binary encoded-form, either 1 or 3 bytes. + */ + private static int getCharSize(int character) { + // See char encoding in FusionDictionary.java + if (fitsOnOneByte(character)) return 1; + if (INVALID_CHARACTER == character) return 1; + return 3; + } + + /** + * Compute the byte size of a character array. + */ + private static int getCharArraySize(final int[] chars) { + int size = 0; + for (int character : chars) size += getCharSize(character); + return size; + } + + /** + * Writes a char array to a byte buffer. + * + * @param codePoints the code point array to write. + * @param buffer the byte buffer to write to. + * @param index the index in buffer to write the character array to. + * @return the index after the last character. + */ + private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) { + for (int codePoint : codePoints) { + if (1 == getCharSize(codePoint)) { + buffer[index++] = (byte)codePoint; + } else { + buffer[index++] = (byte)(0xFF & (codePoint >> 16)); + buffer[index++] = (byte)(0xFF & (codePoint >> 8)); + buffer[index++] = (byte)(0xFF & codePoint); + } + } + return index; + } + + /** + * Writes a string with our character format to a byte buffer. + * + * This will also write the terminator byte. + * + * @param buffer the byte buffer to write to. + * @param origin the offset to write from. + * @param word the string to write. + * @return the size written, in bytes. + */ + private static int writeString(final byte[] buffer, final int origin, + final String word) { + final int length = word.length(); + int index = origin; + for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { + final int codePoint = word.codePointAt(i); + if (1 == getCharSize(codePoint)) { + buffer[index++] = (byte)codePoint; + } else { + buffer[index++] = (byte)(0xFF & (codePoint >> 16)); + buffer[index++] = (byte)(0xFF & (codePoint >> 8)); + buffer[index++] = (byte)(0xFF & codePoint); + } + } + buffer[index++] = GROUP_CHARACTERS_TERMINATOR; + return index - origin; + } + + /** + * Writes a string with our character format to a ByteArrayOutputStream. + * + * This will also write the terminator byte. + * + * @param buffer the ByteArrayOutputStream to write to. + * @param word the string to write. + */ + private static void writeString(ByteArrayOutputStream buffer, final String word) { + final int length = word.length(); + for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { + final int codePoint = word.codePointAt(i); + if (1 == getCharSize(codePoint)) { + buffer.write((byte) codePoint); + } else { + buffer.write((byte) (0xFF & (codePoint >> 16))); + buffer.write((byte) (0xFF & (codePoint >> 8))); + buffer.write((byte) (0xFF & codePoint)); + } + } + buffer.write(GROUP_CHARACTERS_TERMINATOR); + } + + /** + * Reads a string from a RandomAccessFile. This is the converse of the above method. + */ + private static String readString(final RandomAccessFile source) throws IOException { + final StringBuilder s = new StringBuilder(); + int character = readChar(source); + while (character != INVALID_CHARACTER) { + s.appendCodePoint(character); + character = readChar(source); + } + return s.toString(); + } + + /** + * Reads a character from the file. + * + * This follows the character format documented earlier in this source file. + * + * @param source the file, positioned over an encoded character. + * @return the character code. + */ + private static int readChar(RandomAccessFile source) throws IOException { + int character = source.readUnsignedByte(); + if (!fitsOnOneByte(character)) { + if (GROUP_CHARACTERS_TERMINATOR == character) + return INVALID_CHARACTER; + character <<= 16; + character += source.readUnsignedShort(); + } + return character; + } + } + + /** + * Compute the binary size of the character array in a group + * + * If only one character, this is the size of this character. If many, it's the sum of their + * sizes + 1 byte for the terminator. + * + * @param group the group + * @return the size of the char array, including the terminator if any + */ + private static int getGroupCharactersSize(CharGroup group) { + int size = CharEncoding.getCharArraySize(group.mChars); + if (group.hasSeveralChars()) size += GROUP_TERMINATOR_SIZE; + return size; + } + + /** + * Compute the binary size of the group count + * @param count the group count + * @return the size of the group count, either 1 or 2 bytes. + */ + private static int getGroupCountSize(final int count) { + if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= count) { + return 1; + } else if (MAX_CHARGROUPS_IN_A_NODE >= count) { + return 2; + } else { + throw new RuntimeException("Can't have more than " + MAX_CHARGROUPS_IN_A_NODE + + " groups in a node (found " + count +")"); + } + } + + /** + * Compute the binary size of the group count for a node + * @param node the node + * @return the size of the group count, either 1 or 2 bytes. + */ + private static int getGroupCountSize(final Node node) { + return getGroupCountSize(node.mData.size()); + } + + /** + * Compute the size of a shortcut in bytes. + */ + private static int getShortcutSize(final WeightedString shortcut) { + int size = GROUP_ATTRIBUTE_FLAGS_SIZE; + final String word = shortcut.mWord; + final int length = word.length(); + for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { + final int codePoint = word.codePointAt(i); + size += CharEncoding.getCharSize(codePoint); + } + size += GROUP_TERMINATOR_SIZE; + return size; + } + + /** + * Compute the size of a shortcut list in bytes. + * + * This is known in advance and does not change according to position in the file + * like address lists do. + */ + private static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) { + if (null == shortcutList) return 0; + int size = GROUP_SHORTCUT_LIST_SIZE_SIZE; + for (final WeightedString shortcut : shortcutList) { + size += getShortcutSize(shortcut); + } + return size; + } + + /** + * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything. + * + * @param group the CharGroup to compute the size of. + * @return the maximum size of the group. + */ + private static int getCharGroupMaximumSize(CharGroup group) { + int size = getGroupCharactersSize(group) + GROUP_FLAGS_SIZE; + // If terminal, one byte for the frequency + if (group.isTerminal()) size += GROUP_FREQUENCY_SIZE; + size += GROUP_MAX_ADDRESS_SIZE; // For children address + size += getShortcutListSize(group.mShortcutTargets); + if (null != group.mBigrams) { + size += (GROUP_ATTRIBUTE_FLAGS_SIZE + GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE) + * group.mBigrams.size(); + } + return size; + } + + /** + * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches + * it in the 'actualSize' member of the node. + * + * @param node the node to compute the maximum size of. + */ + private static void setNodeMaximumSize(Node node) { + int size = getGroupCountSize(node); + for (CharGroup g : node.mData) { + final int groupSize = getCharGroupMaximumSize(g); + g.mCachedSize = groupSize; + size += groupSize; + } + node.mCachedSize = size; + } + + /** + * Helper method to hide the actual value of the no children address. + */ + private static boolean hasChildrenAddress(int address) { + return NO_CHILDREN_ADDRESS != address; + } + + /** + * Compute the size, in bytes, that an address will occupy. + * + * This can be used either for children addresses (which are always positive) or for + * attribute, which may be positive or negative but + * store their sign bit separately. + * + * @param address the address + * @return the byte size. + */ + private static int getByteSize(int address) { + assert(address < 0x1000000); + if (!hasChildrenAddress(address)) { + return 0; + } else if (Math.abs(address) < 0x100) { + return 1; + } else if (Math.abs(address) < 0x10000) { + return 2; + } else { + return 3; + } + } + // End utility methods. + + // This method is responsible for finding a nice ordering of the nodes that favors run-time + // cache performance and dictionary size. + /* package for tests */ static ArrayList<Node> flattenTree(Node root) { + final int treeSize = FusionDictionary.countCharGroups(root); + MakedictLog.i("Counted nodes : " + treeSize); + final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize); + return flattenTreeInner(flatTree, root); + } + + private static ArrayList<Node> flattenTreeInner(ArrayList<Node> list, Node node) { + // Removing the node is necessary if the tails are merged, because we would then + // add the same node several times when we only want it once. A number of places in + // the code also depends on any node being only once in the list. + // Merging tails can only be done if there are no attributes. Searching for attributes + // in LatinIME code depends on a total breadth-first ordering, which merging tails + // breaks. If there are no attributes, it should be fine (and reduce the file size) + // to merge tails, and removing the node from the list would be necessary. However, + // we don't merge tails because breaking the breadth-first ordering would result in + // extreme overhead at bigram lookup time (it would make the search function O(n) instead + // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty + // high). + // If no nodes are ever merged, we can't have the same node twice in the list, hence + // searching for duplicates in unnecessary. It is also very performance consuming, + // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making + // this simple list.remove operation O(n*n) overall. On Android this overhead is very + // high. + // For future reference, the code to remove duplicate is a simple : list.remove(node); + list.add(node); + final ArrayList<CharGroup> branches = node.mData; + final int nodeSize = branches.size(); + for (CharGroup group : branches) { + if (null != group.mChildren) flattenTreeInner(list, group.mChildren); + } + return list; + } + + /** + * Finds the absolute address of a word in the dictionary. + * + * @param dict the dictionary in which to search. + * @param word the word we are searching for. + * @return the word address. If it is not found, an exception is thrown. + */ + private static int findAddressOfWord(final FusionDictionary dict, final String word) { + return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress; + } + + /** + * Computes the actual node size, based on the cached addresses of the children nodes. + * + * Each node stores its tentative address. During dictionary address computing, these + * are not final, but they can be used to compute the node size (the node size depends + * on the address of the children because the number of bytes necessary to store an + * address depends on its numeric value. The return value indicates whether the node + * contents (as in, any of the addresses stored in the cache fields) have changed with + * respect to their previous value. + * + * @param node the node to compute the size of. + * @param dict the dictionary in which the word/attributes are to be found. + * @return false if none of the cached addresses inside the node changed, true otherwise. + */ + private static boolean computeActualNodeSize(Node node, FusionDictionary dict) { + boolean changed = false; + int size = getGroupCountSize(node); + for (CharGroup group : node.mData) { + if (group.mCachedAddress != node.mCachedAddress + size) { + changed = true; + group.mCachedAddress = node.mCachedAddress + size; + } + int groupSize = GROUP_FLAGS_SIZE + getGroupCharactersSize(group); + if (group.isTerminal()) groupSize += GROUP_FREQUENCY_SIZE; + if (null != group.mChildren) { + final int offsetBasePoint= groupSize + node.mCachedAddress + size; + final int offset = group.mChildren.mCachedAddress - offsetBasePoint; + groupSize += getByteSize(offset); + } + groupSize += getShortcutListSize(group.mShortcutTargets); + if (null != group.mBigrams) { + for (WeightedString bigram : group.mBigrams) { + final int offsetBasePoint = groupSize + node.mCachedAddress + size + + GROUP_FLAGS_SIZE; + final int addressOfBigram = findAddressOfWord(dict, bigram.mWord); + final int offset = addressOfBigram - offsetBasePoint; + groupSize += getByteSize(offset) + GROUP_FLAGS_SIZE; + } + } + group.mCachedSize = groupSize; + size += groupSize; + } + if (node.mCachedSize != size) { + node.mCachedSize = size; + changed = true; + } + return changed; + } + + /** + * Computes the byte size of a list of nodes and updates each node cached position. + * + * @param flatNodes the array of nodes. + * @return the byte size of the entire stack. + */ + private static int stackNodes(ArrayList<Node> flatNodes) { + int nodeOffset = 0; + for (Node n : flatNodes) { + n.mCachedAddress = nodeOffset; + int groupCountSize = getGroupCountSize(n); + int groupOffset = 0; + for (CharGroup g : n.mData) { + g.mCachedAddress = groupCountSize + nodeOffset + groupOffset; + groupOffset += g.mCachedSize; + } + if (groupOffset + groupCountSize != n.mCachedSize) { + throw new RuntimeException("Bug : Stored and computed node size differ"); + } + nodeOffset += n.mCachedSize; + } + return nodeOffset; + } + + /** + * Compute the addresses and sizes of an ordered node array. + * + * This method takes a node array and will update its cached address and size values + * so that they can be written into a file. It determines the smallest size each of the + * nodes can be given the addresses of its children and attributes, and store that into + * each node. + * The order of the node is given by the order of the array. This method makes no effort + * to find a good order; it only mechanically computes the size this order results in. + * + * @param dict the dictionary + * @param flatNodes the ordered array of nodes + * @return the same array it was passed. The nodes have been updated for address and size. + */ + private static ArrayList<Node> computeAddresses(FusionDictionary dict, + ArrayList<Node> flatNodes) { + // First get the worst sizes and offsets + for (Node n : flatNodes) setNodeMaximumSize(n); + final int offset = stackNodes(flatNodes); + + MakedictLog.i("Compressing the array addresses. Original size : " + offset); + MakedictLog.i("(Recursively seen size : " + offset + ")"); + + int passes = 0; + boolean changesDone = false; + do { + changesDone = false; + for (Node n : flatNodes) { + final int oldNodeSize = n.mCachedSize; + final boolean changed = computeActualNodeSize(n, dict); + final int newNodeSize = n.mCachedSize; + if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!"); + changesDone |= changed; + } + stackNodes(flatNodes); + ++passes; + if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug"); + } while (changesDone); + + final Node lastNode = flatNodes.get(flatNodes.size() - 1); + MakedictLog.i("Compression complete in " + passes + " passes."); + MakedictLog.i("After address compression : " + + (lastNode.mCachedAddress + lastNode.mCachedSize)); + + return flatNodes; + } + + /** + * Sanity-checking method. + * + * This method checks an array of node for juxtaposition, that is, it will do + * nothing if each node's cached address is actually the previous node's address + * plus the previous node's size. + * If this is not the case, it will throw an exception. + * + * @param array the array node to check + */ + private static void checkFlatNodeArray(ArrayList<Node> array) { + int offset = 0; + int index = 0; + for (Node n : array) { + if (n.mCachedAddress != offset) { + throw new RuntimeException("Wrong address for node " + index + + " : expected " + offset + ", got " + n.mCachedAddress); + } + ++index; + offset += n.mCachedSize; + } + } + + /** + * Helper method to write a variable-size address to a file. + * + * @param buffer the buffer to write to. + * @param index the index in the buffer to write the address to. + * @param address the address to write. + * @return the size in bytes the address actually took. + */ + private static int writeVariableAddress(final byte[] buffer, int index, final int address) { + switch (getByteSize(address)) { + case 1: + buffer[index++] = (byte)address; + return 1; + case 2: + buffer[index++] = (byte)(0xFF & (address >> 8)); + buffer[index++] = (byte)(0xFF & address); + return 2; + case 3: + buffer[index++] = (byte)(0xFF & (address >> 16)); + buffer[index++] = (byte)(0xFF & (address >> 8)); + buffer[index++] = (byte)(0xFF & address); + return 3; + case 0: + return 0; + default: + throw new RuntimeException("Address " + address + " has a strange size"); + } + } + + private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress, + final int childrenOffset) { + byte flags = 0; + if (group.mChars.length > 1) flags |= FLAG_HAS_MULTIPLE_CHARS; + if (group.mFrequency >= 0) { + flags |= FLAG_IS_TERMINAL; + } + if (null != group.mChildren) { + switch (getByteSize(childrenOffset)) { + case 1: + flags |= FLAG_GROUP_ADDRESS_TYPE_ONEBYTE; + break; + case 2: + flags |= FLAG_GROUP_ADDRESS_TYPE_TWOBYTES; + break; + case 3: + flags |= FLAG_GROUP_ADDRESS_TYPE_THREEBYTES; + break; + default: + throw new RuntimeException("Node with a strange address"); + } + } + if (null != group.mShortcutTargets) { + if (DBG && 0 == group.mShortcutTargets.size()) { + throw new RuntimeException("0-sized shortcut list must be null"); + } + flags |= FLAG_HAS_SHORTCUT_TARGETS; + } + if (null != group.mBigrams) { + if (DBG && 0 == group.mBigrams.size()) { + throw new RuntimeException("0-sized bigram list must be null"); + } + flags |= FLAG_HAS_BIGRAMS; + } + return flags; + } + + /** + * Makes the flag value for a bigram. + * + * @param more whether there are more bigrams after this one. + * @param offset the offset of the bigram. + * @param bigramFrequency the frequency of the bigram, 0..255. + * @param unigramFrequency the unigram frequency of the same word, 0..255. + * @param word the second bigram, for debugging purposes + * @return the flags + */ + private static final int makeBigramFlags(final boolean more, final int offset, + int bigramFrequency, final int unigramFrequency, final String word) { + int bigramFlags = (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0) + + (offset < 0 ? FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0); + switch (getByteSize(offset)) { + case 1: + bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE; + break; + case 2: + bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES; + break; + case 3: + bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES; + break; + default: + throw new RuntimeException("Strange offset size"); + } + if (unigramFrequency > bigramFrequency) { + MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word + + "\". Bigram freq is " + bigramFrequency + ", unigram freq for " + + word + " is " + unigramFrequency); + bigramFrequency = unigramFrequency; + } + // We compute the difference between 255 (which means probability = 1) and the + // unigram score. We split this into a number of discrete steps. + // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15 + // represents an increase of 16 steps: a value of 15 will be interpreted as the median + // value of the 16th step. In all justice, if the bigram frequency is low enough to be + // rounded below the first step (which means it is less than half a step higher than the + // unigram frequency) then the unigram frequency itself is the best approximation of the + // bigram freq that we could possibly supply, hence we should *not* include this bigram + // in the file at all. + // until this is done, we'll write 0 and slightly overestimate this case. + // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step + // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to + // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the + // step size. Then we compute the start of the first step (the one where value 0 starts) + // by adding half-a-step to the unigramFrequency. From there, we compute the integer + // number of steps to the bigramFrequency. One last thing: we want our steps to include + // their lower bound and exclude their higher bound so we need to have the first step + // start at exactly 1 unit higher than floor(unigramFreq + half a step). + // Note : to reconstruct the score, the dictionary reader will need to divide + // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise, and add + // (discretizedFrequency + 0.5) times this value to get the median value of the step, + // which is the best approximation. This is how we get the most precise result with + // only four bits. + final float stepSize = + (MAX_TERMINAL_FREQUENCY - unigramFrequency) / (1.5f + MAX_BIGRAM_FREQUENCY); + final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f); + final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize); + // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1 + // here. The best approximation would be the unigram freq itself, so we should not + // include this bigram in the dictionary. For now, register as 0, and live with the + // small over-estimation that we get in this case. TODO: actually remove this bigram + // if discretizedFrequency < 0. + final int finalBigramFrequency = discretizedFrequency > 0 ? discretizedFrequency : 0; + bigramFlags += finalBigramFrequency & FLAG_ATTRIBUTE_FREQUENCY; + return bigramFlags; + } + + /** + * Makes the 2-byte value for options flags. + */ + private static final int makeOptionsValue(final FusionDictionary dictionary) { + final DictionaryOptions options = dictionary.mOptions; + final boolean hasBigrams = dictionary.hasBigrams(); + return (options.mFrenchLigatureProcessing ? FRENCH_LIGATURE_PROCESSING_FLAG : 0) + + (options.mGermanUmlautProcessing ? GERMAN_UMLAUT_PROCESSING_FLAG : 0) + + (hasBigrams ? CONTAINS_BIGRAMS_FLAG : 0); + } + + /** + * Makes the flag value for a shortcut. + * + * @param more whether there are more attributes after this one. + * @param frequency the frequency of the attribute, 0..15 + * @return the flags + */ + private static final int makeShortcutFlags(final boolean more, final int frequency) { + return (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0) + (frequency & FLAG_ATTRIBUTE_FREQUENCY); + } + + /** + * Write a node to memory. The node is expected to have its final position cached. + * + * This can be an empty map, but the more is inside the faster the lookups will be. It can + * be carried on as long as nodes do not move. + * + * @param dict the dictionary the node is a part of (for relative offsets). + * @param buffer the memory buffer to write to. + * @param node the node to write. + * @return the address of the END of the node. + */ + private static int writePlacedNode(FusionDictionary dict, byte[] buffer, Node node) { + int index = node.mCachedAddress; + + final int groupCount = node.mData.size(); + final int countSize = getGroupCountSize(node); + if (1 == countSize) { + buffer[index++] = (byte)groupCount; + } else if (2 == countSize) { + // We need to signal 2-byte size by setting the top bit of the MSB to 1, so + // we | 0x80 to do this. + buffer[index++] = (byte)((groupCount >> 8) | 0x80); + buffer[index++] = (byte)(groupCount & 0xFF); + } else { + throw new RuntimeException("Strange size from getGroupCountSize : " + countSize); + } + int groupAddress = index; + for (int i = 0; i < groupCount; ++i) { + CharGroup group = node.mData.get(i); + if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not " + + "the same as the cached address of the group : " + + index + " <> " + group.mCachedAddress); + groupAddress += GROUP_FLAGS_SIZE + getGroupCharactersSize(group); + // Sanity checks. + if (DBG && group.mFrequency > MAX_TERMINAL_FREQUENCY) { + throw new RuntimeException("A node has a frequency > " + MAX_TERMINAL_FREQUENCY + + " : " + group.mFrequency); + } + if (group.mFrequency >= 0) groupAddress += GROUP_FREQUENCY_SIZE; + final int childrenOffset = null == group.mChildren + ? NO_CHILDREN_ADDRESS : group.mChildren.mCachedAddress - groupAddress; + byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset); + buffer[index++] = flags; + index = CharEncoding.writeCharArray(group.mChars, buffer, index); + if (group.hasSeveralChars()) { + buffer[index++] = GROUP_CHARACTERS_TERMINATOR; + } + if (group.mFrequency >= 0) { + buffer[index++] = (byte) group.mFrequency; + } + final int shift = writeVariableAddress(buffer, index, childrenOffset); + index += shift; + groupAddress += shift; + + // Write shortcuts + if (null != group.mShortcutTargets) { + final int indexOfShortcutByteSize = index; + index += GROUP_SHORTCUT_LIST_SIZE_SIZE; + groupAddress += GROUP_SHORTCUT_LIST_SIZE_SIZE; + final Iterator<WeightedString> shortcutIterator = group.mShortcutTargets.iterator(); + while (shortcutIterator.hasNext()) { + final WeightedString target = shortcutIterator.next(); + ++groupAddress; + int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(), + target.mFrequency); + buffer[index++] = (byte)shortcutFlags; + final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord); + index += shortcutShift; + groupAddress += shortcutShift; + } + final int shortcutByteSize = index - indexOfShortcutByteSize; + if (shortcutByteSize > 0xFFFF) { + throw new RuntimeException("Shortcut list too large"); + } + buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8); + buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF); + } + // Write bigrams + if (null != group.mBigrams) { + final Iterator<WeightedString> bigramIterator = group.mBigrams.iterator(); + while (bigramIterator.hasNext()) { + final WeightedString bigram = bigramIterator.next(); + final CharGroup target = + FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord); + final int addressOfBigram = target.mCachedAddress; + final int unigramFrequencyForThisWord = target.mFrequency; + ++groupAddress; + final int offset = addressOfBigram - groupAddress; + int bigramFlags = makeBigramFlags(bigramIterator.hasNext(), offset, + bigram.mFrequency, unigramFrequencyForThisWord, bigram.mWord); + buffer[index++] = (byte)bigramFlags; + final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset)); + index += bigramShift; + groupAddress += bigramShift; + } + } + + } + if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException( + "Not the same size : written " + + (index - node.mCachedAddress) + " bytes out of a node that should have " + + node.mCachedSize + " bytes"); + return index; + } + + /** + * Dumps a collection of useful statistics about a node array. + * + * This prints purely informative stuff, like the total estimated file size, the + * number of nodes, of character groups, the repartition of each address size, etc + * + * @param nodes the node array. + */ + private static void showStatistics(ArrayList<Node> nodes) { + int firstTerminalAddress = Integer.MAX_VALUE; + int lastTerminalAddress = Integer.MIN_VALUE; + int size = 0; + int charGroups = 0; + int maxGroups = 0; + int maxRuns = 0; + for (Node n : nodes) { + if (maxGroups < n.mData.size()) maxGroups = n.mData.size(); + for (CharGroup cg : n.mData) { + ++charGroups; + if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length; + if (cg.mFrequency >= 0) { + if (n.mCachedAddress < firstTerminalAddress) + firstTerminalAddress = n.mCachedAddress; + if (n.mCachedAddress > lastTerminalAddress) + lastTerminalAddress = n.mCachedAddress; + } + } + if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize; + } + final int[] groupCounts = new int[maxGroups + 1]; + final int[] runCounts = new int[maxRuns + 1]; + for (Node n : nodes) { + ++groupCounts[n.mData.size()]; + for (CharGroup cg : n.mData) { + ++runCounts[cg.mChars.length]; + } + } + + MakedictLog.i("Statistics:\n" + + " total file size " + size + "\n" + + " " + nodes.size() + " nodes\n" + + " " + charGroups + " groups (" + ((float)charGroups / nodes.size()) + + " groups per node)\n" + + " first terminal at " + firstTerminalAddress + "\n" + + " last terminal at " + lastTerminalAddress + "\n" + + " Group stats : max = " + maxGroups); + for (int i = 0; i < groupCounts.length; ++i) { + MakedictLog.i(" " + i + " : " + groupCounts[i]); + } + MakedictLog.i(" Character run stats : max = " + maxRuns); + for (int i = 0; i < runCounts.length; ++i) { + MakedictLog.i(" " + i + " : " + runCounts[i]); + } + } + + /** + * Dumps a FusionDictionary to a file. + * + * This is the public entry point to write a dictionary to a file. + * + * @param destination the stream to write the binary data to. + * @param dict the dictionary to write. + * @param version the version of the format to write, currently either 1 or 2. + */ + public static void writeDictionaryBinary(final OutputStream destination, + final FusionDictionary dict, final int version) + throws IOException, UnsupportedFormatException { + + // Addresses are limited to 3 bytes, but since addresses can be relative to each node, the + // structure itself is not limited to 16MB. However, if it is over 16MB deciding the order + // of the nodes becomes a quite complicated problem, because though the dictionary itself + // does not have a size limit, each node must still be within 16MB of all its children and + // parents. As long as this is ensured, the dictionary file may grow to any size. + + if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION) { + throw new UnsupportedFormatException("Requested file format version " + version + + ", but this implementation only supports versions " + + MINIMUM_SUPPORTED_VERSION + " through " + MAXIMUM_SUPPORTED_VERSION); + } + + ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256); + + // The magic number in big-endian order. + if (version >= FIRST_VERSION_WITH_HEADER_SIZE) { + // Magic number for version 2+. + headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 24))); + headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 16))); + headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 8))); + headerBuffer.write((byte) (0xFF & VERSION_2_MAGIC_NUMBER)); + // Dictionary version. + headerBuffer.write((byte) (0xFF & (version >> 8))); + headerBuffer.write((byte) (0xFF & version)); + } else { + // Magic number for version 1. + headerBuffer.write((byte) (0xFF & (VERSION_1_MAGIC_NUMBER >> 8))); + headerBuffer.write((byte) (0xFF & VERSION_1_MAGIC_NUMBER)); + // Dictionary version. + headerBuffer.write((byte) (0xFF & version)); + } + // Options flags + final int options = makeOptionsValue(dict); + headerBuffer.write((byte) (0xFF & (options >> 8))); + headerBuffer.write((byte) (0xFF & options)); + if (version >= FIRST_VERSION_WITH_HEADER_SIZE) { + final int headerSizeOffset = headerBuffer.size(); + // Placeholder to be written later with header size. + for (int i = 0; i < 4; ++i) { + headerBuffer.write(0); + } + // Write out the options. + for (final String key : dict.mOptions.mAttributes.keySet()) { + final String value = dict.mOptions.mAttributes.get(key); + CharEncoding.writeString(headerBuffer, key); + CharEncoding.writeString(headerBuffer, value); + } + final int size = headerBuffer.size(); + final byte[] bytes = headerBuffer.toByteArray(); + // Write out the header size. + bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24)); + bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16)); + bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8)); + bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0)); + destination.write(bytes); + } else { + headerBuffer.writeTo(destination); + } + + headerBuffer.close(); + + // Leave the choice of the optimal node order to the flattenTree function. + MakedictLog.i("Flattening the tree..."); + ArrayList<Node> flatNodes = flattenTree(dict.mRoot); + + MakedictLog.i("Computing addresses..."); + computeAddresses(dict, flatNodes); + MakedictLog.i("Checking array..."); + if (DBG) checkFlatNodeArray(flatNodes); + + // Create a buffer that matches the final dictionary size. + final Node lastNode = flatNodes.get(flatNodes.size() - 1); + final int bufferSize =(lastNode.mCachedAddress + lastNode.mCachedSize); + final byte[] buffer = new byte[bufferSize]; + int index = 0; + + MakedictLog.i("Writing file..."); + int dataEndOffset = 0; + for (Node n : flatNodes) { + dataEndOffset = writePlacedNode(dict, buffer, n); + } + + if (DBG) showStatistics(flatNodes); + + destination.write(buffer, 0, dataEndOffset); + + destination.close(); + MakedictLog.i("Done"); + } + + + // Input methods: Read a binary dictionary to memory. + // readDictionaryBinary is the public entry point for them. + + static final int[] characterBuffer = new int[MAX_WORD_LENGTH]; + private static CharGroupInfo readCharGroup(RandomAccessFile source, + final int originalGroupAddress) throws IOException { + int addressPointer = originalGroupAddress; + final int flags = source.readUnsignedByte(); + ++addressPointer; + final int characters[]; + if (0 != (flags & FLAG_HAS_MULTIPLE_CHARS)) { + int index = 0; + int character = CharEncoding.readChar(source); + addressPointer += CharEncoding.getCharSize(character); + while (-1 != character) { + characterBuffer[index++] = character; + character = CharEncoding.readChar(source); + addressPointer += CharEncoding.getCharSize(character); + } + characters = Arrays.copyOfRange(characterBuffer, 0, index); + } else { + final int character = CharEncoding.readChar(source); + addressPointer += CharEncoding.getCharSize(character); + characters = new int[] { character }; + } + final int frequency; + if (0 != (FLAG_IS_TERMINAL & flags)) { + ++addressPointer; + frequency = source.readUnsignedByte(); + } else { + frequency = CharGroup.NOT_A_TERMINAL; + } + int childrenAddress = addressPointer; + switch (flags & MASK_GROUP_ADDRESS_TYPE) { + case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE: + childrenAddress += source.readUnsignedByte(); + addressPointer += 1; + break; + case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES: + childrenAddress += source.readUnsignedShort(); + addressPointer += 2; + break; + case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES: + childrenAddress += (source.readUnsignedByte() << 16) + source.readUnsignedShort(); + addressPointer += 3; + break; + case FLAG_GROUP_ADDRESS_TYPE_NOADDRESS: + default: + childrenAddress = NO_CHILDREN_ADDRESS; + break; + } + ArrayList<WeightedString> shortcutTargets = null; + if (0 != (flags & FLAG_HAS_SHORTCUT_TARGETS)) { + final long pointerBefore = source.getFilePointer(); + shortcutTargets = new ArrayList<WeightedString>(); + source.readUnsignedShort(); // Skip the size + while (true) { + final int targetFlags = source.readUnsignedByte(); + final String word = CharEncoding.readString(source); + shortcutTargets.add(new WeightedString(word, + targetFlags & FLAG_ATTRIBUTE_FREQUENCY)); + if (0 == (targetFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break; + } + addressPointer += (source.getFilePointer() - pointerBefore); + } + ArrayList<PendingAttribute> bigrams = null; + if (0 != (flags & FLAG_HAS_BIGRAMS)) { + bigrams = new ArrayList<PendingAttribute>(); + while (true) { + final int bigramFlags = source.readUnsignedByte(); + ++addressPointer; + final int sign = 0 == (bigramFlags & FLAG_ATTRIBUTE_OFFSET_NEGATIVE) ? 1 : -1; + int bigramAddress = addressPointer; + switch (bigramFlags & MASK_ATTRIBUTE_ADDRESS_TYPE) { + case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE: + bigramAddress += sign * source.readUnsignedByte(); + addressPointer += 1; + break; + case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES: + bigramAddress += sign * source.readUnsignedShort(); + addressPointer += 2; + break; + case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES: + final int offset = ((source.readUnsignedByte() << 16) + + source.readUnsignedShort()); + bigramAddress += sign * offset; + addressPointer += 3; + break; + default: + throw new RuntimeException("Has bigrams with no address"); + } + bigrams.add(new PendingAttribute(bigramFlags & FLAG_ATTRIBUTE_FREQUENCY, + bigramAddress)); + if (0 == (bigramFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break; + } + } + return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency, + childrenAddress, shortcutTargets, bigrams); + } + + /** + * Reads and returns the char group count out of a file and forwards the pointer. + */ + private static int readCharGroupCount(RandomAccessFile source) throws IOException { + final int msb = source.readUnsignedByte(); + if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) { + return msb; + } else { + return ((MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8) + + source.readUnsignedByte(); + } + } + + // The word cache here is a stopgap bandaid to help the catastrophic performance + // of this method. Since it performs direct, unbuffered random access to the file and + // may be called hundreds of thousands of times, the resulting performance is not + // reasonable without some kind of cache. Thus: + // TODO: perform buffered I/O here and in other places in the code. + private static TreeMap<Integer, String> wordCache = new TreeMap<Integer, String>(); + /** + * Finds, as a string, the word at the address passed as an argument. + * + * @param source the file to read from. + * @param headerSize the size of the header. + * @param address the address to seek. + * @return the word, as a string. + * @throws IOException if the file can't be read. + */ + private static String getWordAtAddress(final RandomAccessFile source, final long headerSize, + int address) throws IOException { + final String cachedString = wordCache.get(address); + if (null != cachedString) return cachedString; + final long originalPointer = source.getFilePointer(); + source.seek(headerSize); + final int count = readCharGroupCount(source); + int groupOffset = getGroupCountSize(count); + final StringBuilder builder = new StringBuilder(); + String result = null; + + CharGroupInfo last = null; + for (int i = count - 1; i >= 0; --i) { + CharGroupInfo info = readCharGroup(source, groupOffset); + groupOffset = info.mEndAddress; + if (info.mOriginalAddress == address) { + builder.append(new String(info.mCharacters, 0, info.mCharacters.length)); + result = builder.toString(); + break; // and return + } + if (hasChildrenAddress(info.mChildrenAddress)) { + if (info.mChildrenAddress > address) { + if (null == last) continue; + builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); + source.seek(last.mChildrenAddress + headerSize); + groupOffset = last.mChildrenAddress + 1; + i = source.readUnsignedByte(); + last = null; + continue; + } + last = info; + } + if (0 == i && hasChildrenAddress(last.mChildrenAddress)) { + builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); + source.seek(last.mChildrenAddress + headerSize); + groupOffset = last.mChildrenAddress + 1; + i = source.readUnsignedByte(); + last = null; + continue; + } + } + source.seek(originalPointer); + wordCache.put(address, result); + return result; + } + + /** + * Reads a single node from a binary file. + * + * This methods reads the file at the current position of its file pointer. A node is + * fully expected to start at the current position. + * This will recursively read other nodes into the structure, populating the reverse + * maps on the fly and using them to keep track of already read nodes. + * + * @param source the data file, correctly positioned at the start of a node. + * @param headerSize the size, in bytes, of the file header. + * @param reverseNodeMap a mapping from addresses to already read nodes. + * @param reverseGroupMap a mapping from addresses to already read character groups. + * @return the read node with all his children already read. + */ + private static Node readNode(RandomAccessFile source, long headerSize, + Map<Integer, Node> reverseNodeMap, Map<Integer, CharGroup> reverseGroupMap) + throws IOException { + final int nodeOrigin = (int)(source.getFilePointer() - headerSize); + final int count = readCharGroupCount(source); + final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>(); + int groupOffset = nodeOrigin + getGroupCountSize(count); + for (int i = count; i > 0; --i) { + CharGroupInfo info = readCharGroup(source, groupOffset); + ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets; + ArrayList<WeightedString> bigrams = null; + if (null != info.mBigrams) { + bigrams = new ArrayList<WeightedString>(); + for (PendingAttribute bigram : info.mBigrams) { + final String word = getWordAtAddress(source, headerSize, bigram.mAddress); + bigrams.add(new WeightedString(word, bigram.mFrequency)); + } + } + if (hasChildrenAddress(info.mChildrenAddress)) { + Node children = reverseNodeMap.get(info.mChildrenAddress); + if (null == children) { + final long currentPosition = source.getFilePointer(); + source.seek(info.mChildrenAddress + headerSize); + children = readNode(source, headerSize, reverseNodeMap, reverseGroupMap); + source.seek(currentPosition); + } + nodeContents.add( + new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency, + children)); + } else { + nodeContents.add( + new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency)); + } + groupOffset = info.mEndAddress; + } + final Node node = new Node(nodeContents); + node.mCachedAddress = nodeOrigin; + reverseNodeMap.put(node.mCachedAddress, node); + return node; + } + + /** + * Helper function to get the binary format version from the header. + */ + private static int getFormatVersion(final RandomAccessFile source) throws IOException { + final int magic_v1 = source.readUnsignedShort(); + if (VERSION_1_MAGIC_NUMBER == magic_v1) return source.readUnsignedByte(); + final int magic_v2 = (magic_v1 << 16) + source.readUnsignedShort(); + if (VERSION_2_MAGIC_NUMBER == magic_v2) return source.readUnsignedShort(); + return NOT_A_VERSION_NUMBER; + } + + /** + * Reads a random access file and returns the memory representation of the dictionary. + * + * This high-level method takes a binary file and reads its contents, populating a + * FusionDictionary structure. The optional dict argument is an existing dictionary to + * which words from the file should be added. If it is null, a new dictionary is created. + * + * @param source the file to read. + * @param dict an optional dictionary to add words to, or null. + * @return the created (or merged) dictionary. + */ + public static FusionDictionary readDictionaryBinary(final RandomAccessFile source, + final FusionDictionary dict) throws IOException, UnsupportedFormatException { + // Check file version + final int version = getFormatVersion(source); + if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION ) { + throw new UnsupportedFormatException("This file has version " + version + + ", but this implementation does not support versions above " + + MAXIMUM_SUPPORTED_VERSION); + } + + // Read options + final int optionsFlags = source.readUnsignedShort(); + + final long headerSize; + final HashMap<String, String> options = new HashMap<String, String>(); + if (version < FIRST_VERSION_WITH_HEADER_SIZE) { + headerSize = source.getFilePointer(); + } else { + headerSize = (source.readUnsignedByte() << 24) + (source.readUnsignedByte() << 16) + + (source.readUnsignedByte() << 8) + source.readUnsignedByte(); + while (source.getFilePointer() < headerSize) { + final String key = CharEncoding.readString(source); + final String value = CharEncoding.readString(source); + options.put(key, value); + } + source.seek(headerSize); + } + + Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>(); + Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>(); + final Node root = readNode(source, headerSize, reverseNodeMapping, reverseGroupMapping); + + FusionDictionary newDict = new FusionDictionary(root, + new FusionDictionary.DictionaryOptions(options, + 0 != (optionsFlags & GERMAN_UMLAUT_PROCESSING_FLAG), + 0 != (optionsFlags & FRENCH_LIGATURE_PROCESSING_FLAG))); + if (null != dict) { + for (final Word w : dict) { + newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets); + } + for (final Word w : dict) { + // By construction a binary dictionary may not have bigrams pointing to + // words that are not also registered as unigrams so we don't have to avoid + // them explicitly here. + for (final WeightedString bigram : w.mBigrams) { + newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency); + } + } + } + + return newDict; + } + + /** + * Basic test to find out whether the file is a binary dictionary or not. + * + * Concretely this only tests the magic number. + * + * @param filename The name of the file to test. + * @return true if it's a binary dictionary, false otherwise + */ + public static boolean isBinaryDictionary(final String filename) { + try { + RandomAccessFile f = new RandomAccessFile(filename, "r"); + final int version = getFormatVersion(f); + return (version >= MINIMUM_SUPPORTED_VERSION && version <= MAXIMUM_SUPPORTED_VERSION); + } catch (FileNotFoundException e) { + return false; + } catch (IOException e) { + return false; + } + } +} |