aboutsummaryrefslogtreecommitdiffstats
path: root/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java
diff options
context:
space:
mode:
authorSatoshi Kataoka <satok@google.com>2012-07-04 15:38:14 +0900
committerSatoshi Kataoka <satok@google.com>2012-07-04 15:38:21 +0900
commitc68b37964b083015967ce290991ad69d29a4055d (patch)
tree909bddc0f0c699b6344015e7ff67e31c0a1f4eff /java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java
parent1e094ac19b99c47f0b8a5108e20949ac91cfa03e (diff)
parent30a324a58dbe1e2dc47d83c1bcc0af262ab0d542 (diff)
downloadlatinime-c68b37964b083015967ce290991ad69d29a4055d.tar.gz
latinime-c68b37964b083015967ce290991ad69d29a4055d.tar.xz
latinime-c68b37964b083015967ce290991ad69d29a4055d.zip
Merge remote-tracking branch 'goog/master' into mergescript
Conflicts: CleanSpec.mk java/Android.mk java/res/drawable-large-hdpi/btn_keyboard_key_popup_selected_holo.9.png java/res/drawable-large-hdpi/hint_popup_holo.9.png java/res/drawable-large-hdpi/sym_keyboard_numsymbol_holo.png java/res/drawable-large-hdpi/sym_keyboard_tab_holo.png java/res/drawable-large-land-hdpi/hint_popup_holo.9.png java/res/drawable-large-land-mdpi/hint_popup_holo.9.png java/res/drawable-large-land-xhdpi/hint_popup_holo.9.png java/res/drawable-large-mdpi/btn_keyboard_key_dark_normal_holo.9.png java/res/drawable-large-mdpi/btn_keyboard_key_dark_normal_off_holo.9.png java/res/drawable-large-mdpi/btn_keyboard_key_dark_normal_on_holo.9.png java/res/drawable-large-mdpi/btn_keyboard_key_dark_pressed_holo.9.png java/res/drawable-large-mdpi/btn_keyboard_key_dark_pressed_off_holo.9.png java/res/drawable-large-mdpi/btn_keyboard_key_dark_pressed_on_holo.9.png java/res/drawable-large-mdpi/btn_keyboard_key_light_normal_holo.9.png java/res/drawable-large-mdpi/btn_keyboard_key_light_pressed_holo.9.png java/res/drawable-large-mdpi/btn_keyboard_key_popup_selected_holo.9.png java/res/drawable-large-mdpi/hint_popup_holo.9.png java/res/drawable-large-mdpi/keyboard_background_holo.9.png java/res/drawable-large-mdpi/keyboard_popup_panel_background_holo.9.png java/res/drawable-large-mdpi/keyboard_suggest_strip_holo.9.png java/res/drawable-large-mdpi/sym_keyboard_delete_holo.png java/res/drawable-large-mdpi/sym_keyboard_num0_holo.png java/res/drawable-large-mdpi/sym_keyboard_num1_holo.png java/res/drawable-large-mdpi/sym_keyboard_num2_holo.png java/res/drawable-large-mdpi/sym_keyboard_num3_holo.png java/res/drawable-large-mdpi/sym_keyboard_num4_holo.png java/res/drawable-large-mdpi/sym_keyboard_num5_holo.png java/res/drawable-large-mdpi/sym_keyboard_num6_holo.png java/res/drawable-large-mdpi/sym_keyboard_num7_holo.png java/res/drawable-large-mdpi/sym_keyboard_num8_holo.png java/res/drawable-large-mdpi/sym_keyboard_num9_holo.png java/res/drawable-large-mdpi/sym_keyboard_numbpound_holo.png java/res/drawable-large-mdpi/sym_keyboard_numbstar_holo.png java/res/drawable-large-mdpi/sym_keyboard_numsymbol_holo.png java/res/drawable-large-mdpi/sym_keyboard_return_holo.png java/res/drawable-large-mdpi/sym_keyboard_settings_holo.png java/res/drawable-large-mdpi/sym_keyboard_shift_holo.png java/res/drawable-large-mdpi/sym_keyboard_shift_locked_holo.png java/res/drawable-large-mdpi/sym_keyboard_space_holo.png java/res/drawable-large-mdpi/sym_keyboard_tab_holo.png java/res/drawable-large-mdpi/sym_keyboard_voice_holo.png java/res/drawable-large-mdpi/sym_keyboard_voice_off_holo.png java/res/drawable-large-xhdpi/btn_keyboard_key_popup_selected_holo.9.png java/res/drawable-large-xhdpi/hint_popup_holo.9.png java/res/drawable-large-xhdpi/sym_keyboard_numsymbol_holo.png java/res/drawable-large-xhdpi/sym_keyboard_tab_holo.png java/res/drawable-xlarge-hdpi/btn_keyboard_key_popup_selected_holo.9.png java/res/drawable-xlarge-hdpi/hint_popup_holo.9.png java/res/drawable-xlarge-land-hdpi/hint_popup_holo.9.png java/res/drawable-xlarge-land-mdpi/hint_popup_holo.9.png java/res/drawable-xlarge-land-xhdpi/hint_popup_holo.9.png java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_normal_holo.9.png java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_normal_off_holo.9.png java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_normal_on_holo.9.png java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_pressed_holo.9.png java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_pressed_off_holo.9.png java/res/drawable-xlarge-mdpi/btn_keyboard_key_dark_pressed_on_holo.9.png java/res/drawable-xlarge-mdpi/btn_keyboard_key_light_normal_holo.9.png java/res/drawable-xlarge-mdpi/btn_keyboard_key_light_pressed_holo.9.png java/res/drawable-xlarge-mdpi/btn_keyboard_key_popup_selected_holo.9.png java/res/drawable-xlarge-mdpi/hint_popup_holo.9.png java/res/drawable-xlarge-mdpi/keyboard_background_holo.9.png java/res/drawable-xlarge-mdpi/keyboard_popup_panel_background_holo.9.png java/res/drawable-xlarge-mdpi/keyboard_suggest_strip_holo.9.png java/res/drawable-xlarge-mdpi/sym_keyboard_delete_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_num0_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_num1_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_num2_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_num3_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_num4_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_num5_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_num6_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_num7_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_num8_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_num9_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_numbpound_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_numbstar_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_return_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_settings_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_shift_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_shift_locked_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_space_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_voice_holo.png java/res/drawable-xlarge-mdpi/sym_keyboard_voice_off_holo.png java/res/drawable-xlarge-xhdpi/btn_keyboard_key_popup_selected_holo.9.png java/res/drawable-xlarge-xhdpi/hint_popup_holo.9.png java/res/layout-xlarge/recognition_status.xml java/res/values-af/strings.xml java/res/values-am/strings.xml java/res/values-ar/strings.xml java/res/values-be/strings.xml java/res/values-bg/strings.xml java/res/values-ca/strings.xml java/res/values-cs/strings.xml java/res/values-da/strings.xml java/res/values-de/strings.xml java/res/values-el/strings.xml java/res/values-en-rGB/strings.xml java/res/values-es-rUS/strings.xml java/res/values-es/strings.xml java/res/values-et/strings.xml java/res/values-fa/strings.xml java/res/values-fi/strings.xml java/res/values-fr/strings.xml java/res/values-hi/strings.xml java/res/values-hr/strings.xml java/res/values-hu/strings.xml java/res/values-in/strings.xml java/res/values-it/strings.xml java/res/values-iw/strings.xml java/res/values-ja/strings.xml java/res/values-ko/strings.xml java/res/values-large/donottranslate.xml java/res/values-lt/strings.xml java/res/values-lv/strings.xml java/res/values-ms/strings.xml java/res/values-nb/strings.xml java/res/values-nl/strings.xml java/res/values-pl/strings.xml java/res/values-pt-rPT/strings.xml java/res/values-pt/strings.xml java/res/values-rm/strings.xml java/res/values-ro/strings.xml java/res/values-ru/strings.xml java/res/values-sk/strings.xml java/res/values-sl/strings.xml java/res/values-sr/strings.xml java/res/values-sv/strings.xml java/res/values-sw/strings.xml java/res/values-sw600dp/donottranslate.xml java/res/values-sw768dp/donottranslate.xml java/res/values-th/strings.xml java/res/values-tl/strings.xml java/res/values-tr/strings.xml java/res/values-uk/strings.xml java/res/values-vi/strings.xml java/res/values-xlarge/donottranslate.xml java/res/values-zh-rCN/strings.xml java/res/values-zh-rTW/strings.xml java/res/values-zu/strings.xml java/res/values/keypress-vibration-durations.xml java/res/values/predefined-subtypes.xml java/res/xml-large-land/kbd_popup_template.xml java/res/xml-large/kbd_key_styles.xml java/res/xml-large/kbd_popup_template.xml java/res/xml-large/kbd_qwerty_f2.xml java/res/xml-large/kbd_qwerty_row1.xml java/res/xml-large/kbd_qwerty_row2.xml java/res/xml-large/kbd_qwerty_row3.xml java/res/xml-large/kbd_qwerty_row4.xml java/res/xml-large/kbd_row3_right.xml java/res/xml-large/kbd_rows_arabic.xml java/res/xml-large/kbd_rows_azerty.xml java/res/xml-large/kbd_rows_hebrew.xml java/res/xml-large/kbd_rows_qwerty.xml java/res/xml-large/kbd_rows_qwertz.xml java/res/xml-large/kbd_rows_russian.xml java/res/xml-large/kbd_rows_scandinavian.xml java/res/xml-large/kbd_rows_serbian.xml java/res/xml-large/kbd_rows_spanish.xml java/res/xml-large/kbd_symbols.xml java/res/xml-large/kbd_symbols_shift.xml java/res/xml-sw600dp-land/kbd_more_keys_keyboard_template.xml java/res/xml-sw600dp-land/kbd_popup_template.xml java/res/xml-sw600dp/kbd_more_keys_keyboard_template.xml java/res/xml-sw600dp/kbd_popup_template.xml java/res/xml-sw600dp/kbd_row3_right.xml java/res/xml-sw600dp/kbd_rows_qwerty.xml java/res/xml-sw600dp/keys_comma_period.xml java/res/xml-sw768dp-land/kbd_more_keys_keyboard_template.xml java/res/xml-sw768dp-land/kbd_popup_template.xml java/res/xml-sw768dp/kbd_more_keys_keyboard_template.xml java/res/xml-sw768dp/kbd_popup_template.xml java/res/xml-sw768dp/kbd_row3_right2.xml java/res/xml-sw768dp/kbd_rows_qwerty.xml java/res/xml-sw768dp/row_symbols_shift4.xml java/res/xml-xlarge-land/kbd_popup_template.xml java/res/xml-xlarge/kbd_key_styles.xml java/res/xml-xlarge/kbd_popup_template.xml java/res/xml-xlarge/kbd_qwerty_row1.xml java/res/xml-xlarge/kbd_qwerty_row2.xml java/res/xml-xlarge/kbd_qwerty_row3.xml java/res/xml-xlarge/kbd_qwerty_row4.xml java/res/xml-xlarge/kbd_row3_right2.xml java/res/xml-xlarge/kbd_rows_arabic.xml java/res/xml-xlarge/kbd_rows_azerty.xml java/res/xml-xlarge/kbd_rows_hebrew.xml java/res/xml-xlarge/kbd_rows_qwerty.xml java/res/xml-xlarge/kbd_rows_qwertz.xml java/res/xml-xlarge/kbd_rows_russian.xml java/res/xml-xlarge/kbd_rows_scandinavian.xml java/res/xml-xlarge/kbd_rows_serbian.xml java/res/xml-xlarge/kbd_rows_spanish.xml java/res/xml-xlarge/kbd_symbols.xml java/res/xml-xlarge/kbd_symbols_shift.xml java/res/xml/key_azerty_quote.xml java/res/xml/key_f1.xml java/res/xml/method.xml java/src/com/android/inputmethod/compat/InputMethodServiceCompatWrapper.java java/src/com/android/inputmethod/latin/Utils.java native/Android.mk Change-Id: I96e8e042f636ed8e5cc023cf8514f13121e39195
Diffstat (limited to 'java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java')
-rw-r--r--java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java1413
1 files changed, 1413 insertions, 0 deletions
diff --git a/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java b/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java
new file mode 100644
index 000000000..2c3eee74c
--- /dev/null
+++ b/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java
@@ -0,0 +1,1413 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License"); you may not
+ * use this file except in compliance with the License. You may obtain a copy of
+ * the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
+ * License for the specific language governing permissions and limitations under
+ * the License.
+ */
+
+package com.android.inputmethod.latin.makedict;
+
+import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
+import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions;
+import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
+import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
+
+import java.io.ByteArrayOutputStream;
+import java.io.FileNotFoundException;
+import java.io.IOException;
+import java.io.OutputStream;
+import java.io.RandomAccessFile;
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.HashMap;
+import java.util.Iterator;
+import java.util.Map;
+import java.util.TreeMap;
+
+/**
+ * Reads and writes XML files for a FusionDictionary.
+ *
+ * All the methods in this class are static.
+ */
+public class BinaryDictInputOutput {
+
+ final static boolean DBG = MakedictLog.DBG;
+
+ /* Node layout is as follows:
+ * | addressType xx : mask with MASK_GROUP_ADDRESS_TYPE
+ * 2 bits, 00 = no children : FLAG_GROUP_ADDRESS_TYPE_NOADDRESS
+ * f | 01 = 1 byte : FLAG_GROUP_ADDRESS_TYPE_ONEBYTE
+ * l | 10 = 2 bytes : FLAG_GROUP_ADDRESS_TYPE_TWOBYTES
+ * a | 11 = 3 bytes : FLAG_GROUP_ADDRESS_TYPE_THREEBYTES
+ * g | has several chars ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_MULTIPLE_CHARS
+ * s | has a terminal ? 1 bit, 1 = yes, 0 = no : FLAG_IS_TERMINAL
+ * | has shortcut targets ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_SHORTCUT_TARGETS
+ * | has bigrams ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_BIGRAMS
+ *
+ * c | IF FLAG_HAS_MULTIPLE_CHARS
+ * h | char, char, char, char n * (1 or 3 bytes) : use CharGroupInfo for i/o helpers
+ * a | end 1 byte, = 0
+ * r | ELSE
+ * s | char 1 or 3 bytes
+ * | END
+ *
+ * f |
+ * r | IF FLAG_IS_TERMINAL
+ * e | frequency 1 byte
+ * q |
+ *
+ * c | IF 00 = FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = addressType
+ * h | // nothing
+ * i | ELSIF 01 = FLAG_GROUP_ADDRESS_TYPE_ONEBYTE == addressType
+ * l | children address, 1 byte
+ * d | ELSIF 10 = FLAG_GROUP_ADDRESS_TYPE_TWOBYTES == addressType
+ * r | children address, 2 bytes
+ * e | ELSE // 11 = FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = addressType
+ * n | children address, 3 bytes
+ * A | END
+ * d
+ * dress
+ *
+ * | IF FLAG_IS_TERMINAL && FLAG_HAS_SHORTCUT_TARGETS
+ * | shortcut string list
+ * | IF FLAG_IS_TERMINAL && FLAG_HAS_BIGRAMS
+ * | bigrams address list
+ *
+ * Char format is:
+ * 1 byte = bbbbbbbb match
+ * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
+ * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
+ * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
+ * 00011111 would be outside unicode.
+ * else: iso-latin-1 code
+ * This allows for the whole unicode range to be encoded, including chars outside of
+ * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
+ * characters which should never happen anyway (and still work, but take 3 bytes).
+ *
+ * bigram address list is:
+ * <flags> = | hasNext = 1 bit, 1 = yes, 0 = no : FLAG_ATTRIBUTE_HAS_NEXT
+ * | addressSign = 1 bit, : FLAG_ATTRIBUTE_OFFSET_NEGATIVE
+ * | 1 = must take -address, 0 = must take +address
+ * | xx : mask with MASK_ATTRIBUTE_ADDRESS_TYPE
+ * | addressFormat = 2 bits, 00 = unused : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
+ * | 01 = 1 byte : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE
+ * | 10 = 2 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES
+ * | 11 = 3 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES
+ * | 4 bits : frequency : mask with FLAG_ATTRIBUTE_FREQUENCY
+ * <address> | IF (01 == FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE == addressFormat)
+ * | read 1 byte, add top 4 bits
+ * | ELSIF (10 == FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES == addressFormat)
+ * | read 2 bytes, add top 4 bits
+ * | ELSE // 11 == FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES == addressFormat
+ * | read 3 bytes, add top 4 bits
+ * | END
+ * | if (FLAG_ATTRIBUTE_OFFSET_NEGATIVE) then address = -address
+ * if (FLAG_ATTRIBUTE_HAS_NEXT) goto bigram_and_shortcut_address_list_is
+ *
+ * shortcut string list is:
+ * <byte size> = GROUP_SHORTCUT_LIST_SIZE_SIZE bytes, big-endian: size of the list, in bytes.
+ * <flags> = | hasNext = 1 bit, 1 = yes, 0 = no : FLAG_ATTRIBUTE_HAS_NEXT
+ * | reserved = 3 bits, must be 0
+ * | 4 bits : frequency : mask with FLAG_ATTRIBUTE_FREQUENCY
+ * <shortcut> = | string of characters at the char format described above, with the terminator
+ * | used to signal the end of the string.
+ * if (FLAG_ATTRIBUTE_HAS_NEXT goto flags
+ */
+
+ private static final int VERSION_1_MAGIC_NUMBER = 0x78B1;
+ private static final int VERSION_2_MAGIC_NUMBER = 0x9BC13AFE;
+ private static final int MINIMUM_SUPPORTED_VERSION = 1;
+ private static final int MAXIMUM_SUPPORTED_VERSION = 2;
+ private static final int NOT_A_VERSION_NUMBER = -1;
+ private static final int FIRST_VERSION_WITH_HEADER_SIZE = 2;
+
+ // These options need to be the same numeric values as the one in the native reading code.
+ private static final int GERMAN_UMLAUT_PROCESSING_FLAG = 0x1;
+ private static final int FRENCH_LIGATURE_PROCESSING_FLAG = 0x4;
+ private static final int CONTAINS_BIGRAMS_FLAG = 0x8;
+
+ // TODO: Make this value adaptative to content data, store it in the header, and
+ // use it in the reading code.
+ private static final int MAX_WORD_LENGTH = 48;
+
+ private static final int MASK_GROUP_ADDRESS_TYPE = 0xC0;
+ private static final int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00;
+ private static final int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40;
+ private static final int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80;
+ private static final int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0;
+
+ private static final int FLAG_HAS_MULTIPLE_CHARS = 0x20;
+
+ private static final int FLAG_IS_TERMINAL = 0x10;
+ private static final int FLAG_HAS_SHORTCUT_TARGETS = 0x08;
+ private static final int FLAG_HAS_BIGRAMS = 0x04;
+
+ private static final int FLAG_ATTRIBUTE_HAS_NEXT = 0x80;
+ private static final int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40;
+ private static final int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30;
+ private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10;
+ private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20;
+ private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30;
+ private static final int FLAG_ATTRIBUTE_FREQUENCY = 0x0F;
+
+ private static final int GROUP_CHARACTERS_TERMINATOR = 0x1F;
+
+ private static final int GROUP_TERMINATOR_SIZE = 1;
+ private static final int GROUP_FLAGS_SIZE = 1;
+ private static final int GROUP_FREQUENCY_SIZE = 1;
+ private static final int GROUP_MAX_ADDRESS_SIZE = 3;
+ private static final int GROUP_ATTRIBUTE_FLAGS_SIZE = 1;
+ private static final int GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE = 3;
+ private static final int GROUP_SHORTCUT_LIST_SIZE_SIZE = 2;
+
+ private static final int NO_CHILDREN_ADDRESS = Integer.MIN_VALUE;
+ private static final int INVALID_CHARACTER = -1;
+
+ private static final int MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT = 0x7F; // 127
+ private static final int MAX_CHARGROUPS_IN_A_NODE = 0x7FFF; // 32767
+
+ private static final int MAX_TERMINAL_FREQUENCY = 255;
+ private static final int MAX_BIGRAM_FREQUENCY = 15;
+
+ // Arbitrary limit to how much passes we consider address size compression should
+ // terminate in. At the time of this writing, our largest dictionary completes
+ // compression in five passes.
+ // If the number of passes exceeds this number, makedict bails with an exception on
+ // suspicion that a bug might be causing an infinite loop.
+ private static final int MAX_PASSES = 24;
+
+ /**
+ * A class grouping utility function for our specific character encoding.
+ */
+ private static class CharEncoding {
+
+ private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
+ private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF;
+
+ /**
+ * Helper method to find out whether this code fits on one byte
+ */
+ private static boolean fitsOnOneByte(int character) {
+ return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE
+ && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE;
+ }
+
+ /**
+ * Compute the size of a character given its character code.
+ *
+ * Char format is:
+ * 1 byte = bbbbbbbb match
+ * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte
+ * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because
+ * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with
+ * 00011111 would be outside unicode.
+ * else: iso-latin-1 code
+ * This allows for the whole unicode range to be encoded, including chars outside of
+ * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control
+ * characters which should never happen anyway (and still work, but take 3 bytes).
+ *
+ * @param character the character code.
+ * @return the size in binary encoded-form, either 1 or 3 bytes.
+ */
+ private static int getCharSize(int character) {
+ // See char encoding in FusionDictionary.java
+ if (fitsOnOneByte(character)) return 1;
+ if (INVALID_CHARACTER == character) return 1;
+ return 3;
+ }
+
+ /**
+ * Compute the byte size of a character array.
+ */
+ private static int getCharArraySize(final int[] chars) {
+ int size = 0;
+ for (int character : chars) size += getCharSize(character);
+ return size;
+ }
+
+ /**
+ * Writes a char array to a byte buffer.
+ *
+ * @param codePoints the code point array to write.
+ * @param buffer the byte buffer to write to.
+ * @param index the index in buffer to write the character array to.
+ * @return the index after the last character.
+ */
+ private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) {
+ for (int codePoint : codePoints) {
+ if (1 == getCharSize(codePoint)) {
+ buffer[index++] = (byte)codePoint;
+ } else {
+ buffer[index++] = (byte)(0xFF & (codePoint >> 16));
+ buffer[index++] = (byte)(0xFF & (codePoint >> 8));
+ buffer[index++] = (byte)(0xFF & codePoint);
+ }
+ }
+ return index;
+ }
+
+ /**
+ * Writes a string with our character format to a byte buffer.
+ *
+ * This will also write the terminator byte.
+ *
+ * @param buffer the byte buffer to write to.
+ * @param origin the offset to write from.
+ * @param word the string to write.
+ * @return the size written, in bytes.
+ */
+ private static int writeString(final byte[] buffer, final int origin,
+ final String word) {
+ final int length = word.length();
+ int index = origin;
+ for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
+ final int codePoint = word.codePointAt(i);
+ if (1 == getCharSize(codePoint)) {
+ buffer[index++] = (byte)codePoint;
+ } else {
+ buffer[index++] = (byte)(0xFF & (codePoint >> 16));
+ buffer[index++] = (byte)(0xFF & (codePoint >> 8));
+ buffer[index++] = (byte)(0xFF & codePoint);
+ }
+ }
+ buffer[index++] = GROUP_CHARACTERS_TERMINATOR;
+ return index - origin;
+ }
+
+ /**
+ * Writes a string with our character format to a ByteArrayOutputStream.
+ *
+ * This will also write the terminator byte.
+ *
+ * @param buffer the ByteArrayOutputStream to write to.
+ * @param word the string to write.
+ */
+ private static void writeString(ByteArrayOutputStream buffer, final String word) {
+ final int length = word.length();
+ for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
+ final int codePoint = word.codePointAt(i);
+ if (1 == getCharSize(codePoint)) {
+ buffer.write((byte) codePoint);
+ } else {
+ buffer.write((byte) (0xFF & (codePoint >> 16)));
+ buffer.write((byte) (0xFF & (codePoint >> 8)));
+ buffer.write((byte) (0xFF & codePoint));
+ }
+ }
+ buffer.write(GROUP_CHARACTERS_TERMINATOR);
+ }
+
+ /**
+ * Reads a string from a RandomAccessFile. This is the converse of the above method.
+ */
+ private static String readString(final RandomAccessFile source) throws IOException {
+ final StringBuilder s = new StringBuilder();
+ int character = readChar(source);
+ while (character != INVALID_CHARACTER) {
+ s.appendCodePoint(character);
+ character = readChar(source);
+ }
+ return s.toString();
+ }
+
+ /**
+ * Reads a character from the file.
+ *
+ * This follows the character format documented earlier in this source file.
+ *
+ * @param source the file, positioned over an encoded character.
+ * @return the character code.
+ */
+ private static int readChar(RandomAccessFile source) throws IOException {
+ int character = source.readUnsignedByte();
+ if (!fitsOnOneByte(character)) {
+ if (GROUP_CHARACTERS_TERMINATOR == character)
+ return INVALID_CHARACTER;
+ character <<= 16;
+ character += source.readUnsignedShort();
+ }
+ return character;
+ }
+ }
+
+ /**
+ * Compute the binary size of the character array in a group
+ *
+ * If only one character, this is the size of this character. If many, it's the sum of their
+ * sizes + 1 byte for the terminator.
+ *
+ * @param group the group
+ * @return the size of the char array, including the terminator if any
+ */
+ private static int getGroupCharactersSize(CharGroup group) {
+ int size = CharEncoding.getCharArraySize(group.mChars);
+ if (group.hasSeveralChars()) size += GROUP_TERMINATOR_SIZE;
+ return size;
+ }
+
+ /**
+ * Compute the binary size of the group count
+ * @param count the group count
+ * @return the size of the group count, either 1 or 2 bytes.
+ */
+ private static int getGroupCountSize(final int count) {
+ if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= count) {
+ return 1;
+ } else if (MAX_CHARGROUPS_IN_A_NODE >= count) {
+ return 2;
+ } else {
+ throw new RuntimeException("Can't have more than " + MAX_CHARGROUPS_IN_A_NODE
+ + " groups in a node (found " + count +")");
+ }
+ }
+
+ /**
+ * Compute the binary size of the group count for a node
+ * @param node the node
+ * @return the size of the group count, either 1 or 2 bytes.
+ */
+ private static int getGroupCountSize(final Node node) {
+ return getGroupCountSize(node.mData.size());
+ }
+
+ /**
+ * Compute the size of a shortcut in bytes.
+ */
+ private static int getShortcutSize(final WeightedString shortcut) {
+ int size = GROUP_ATTRIBUTE_FLAGS_SIZE;
+ final String word = shortcut.mWord;
+ final int length = word.length();
+ for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
+ final int codePoint = word.codePointAt(i);
+ size += CharEncoding.getCharSize(codePoint);
+ }
+ size += GROUP_TERMINATOR_SIZE;
+ return size;
+ }
+
+ /**
+ * Compute the size of a shortcut list in bytes.
+ *
+ * This is known in advance and does not change according to position in the file
+ * like address lists do.
+ */
+ private static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) {
+ if (null == shortcutList) return 0;
+ int size = GROUP_SHORTCUT_LIST_SIZE_SIZE;
+ for (final WeightedString shortcut : shortcutList) {
+ size += getShortcutSize(shortcut);
+ }
+ return size;
+ }
+
+ /**
+ * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything.
+ *
+ * @param group the CharGroup to compute the size of.
+ * @return the maximum size of the group.
+ */
+ private static int getCharGroupMaximumSize(CharGroup group) {
+ int size = getGroupCharactersSize(group) + GROUP_FLAGS_SIZE;
+ // If terminal, one byte for the frequency
+ if (group.isTerminal()) size += GROUP_FREQUENCY_SIZE;
+ size += GROUP_MAX_ADDRESS_SIZE; // For children address
+ size += getShortcutListSize(group.mShortcutTargets);
+ if (null != group.mBigrams) {
+ size += (GROUP_ATTRIBUTE_FLAGS_SIZE + GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE)
+ * group.mBigrams.size();
+ }
+ return size;
+ }
+
+ /**
+ * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches
+ * it in the 'actualSize' member of the node.
+ *
+ * @param node the node to compute the maximum size of.
+ */
+ private static void setNodeMaximumSize(Node node) {
+ int size = getGroupCountSize(node);
+ for (CharGroup g : node.mData) {
+ final int groupSize = getCharGroupMaximumSize(g);
+ g.mCachedSize = groupSize;
+ size += groupSize;
+ }
+ node.mCachedSize = size;
+ }
+
+ /**
+ * Helper method to hide the actual value of the no children address.
+ */
+ private static boolean hasChildrenAddress(int address) {
+ return NO_CHILDREN_ADDRESS != address;
+ }
+
+ /**
+ * Compute the size, in bytes, that an address will occupy.
+ *
+ * This can be used either for children addresses (which are always positive) or for
+ * attribute, which may be positive or negative but
+ * store their sign bit separately.
+ *
+ * @param address the address
+ * @return the byte size.
+ */
+ private static int getByteSize(int address) {
+ assert(address < 0x1000000);
+ if (!hasChildrenAddress(address)) {
+ return 0;
+ } else if (Math.abs(address) < 0x100) {
+ return 1;
+ } else if (Math.abs(address) < 0x10000) {
+ return 2;
+ } else {
+ return 3;
+ }
+ }
+ // End utility methods.
+
+ // This method is responsible for finding a nice ordering of the nodes that favors run-time
+ // cache performance and dictionary size.
+ /* package for tests */ static ArrayList<Node> flattenTree(Node root) {
+ final int treeSize = FusionDictionary.countCharGroups(root);
+ MakedictLog.i("Counted nodes : " + treeSize);
+ final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize);
+ return flattenTreeInner(flatTree, root);
+ }
+
+ private static ArrayList<Node> flattenTreeInner(ArrayList<Node> list, Node node) {
+ // Removing the node is necessary if the tails are merged, because we would then
+ // add the same node several times when we only want it once. A number of places in
+ // the code also depends on any node being only once in the list.
+ // Merging tails can only be done if there are no attributes. Searching for attributes
+ // in LatinIME code depends on a total breadth-first ordering, which merging tails
+ // breaks. If there are no attributes, it should be fine (and reduce the file size)
+ // to merge tails, and removing the node from the list would be necessary. However,
+ // we don't merge tails because breaking the breadth-first ordering would result in
+ // extreme overhead at bigram lookup time (it would make the search function O(n) instead
+ // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty
+ // high).
+ // If no nodes are ever merged, we can't have the same node twice in the list, hence
+ // searching for duplicates in unnecessary. It is also very performance consuming,
+ // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making
+ // this simple list.remove operation O(n*n) overall. On Android this overhead is very
+ // high.
+ // For future reference, the code to remove duplicate is a simple : list.remove(node);
+ list.add(node);
+ final ArrayList<CharGroup> branches = node.mData;
+ final int nodeSize = branches.size();
+ for (CharGroup group : branches) {
+ if (null != group.mChildren) flattenTreeInner(list, group.mChildren);
+ }
+ return list;
+ }
+
+ /**
+ * Finds the absolute address of a word in the dictionary.
+ *
+ * @param dict the dictionary in which to search.
+ * @param word the word we are searching for.
+ * @return the word address. If it is not found, an exception is thrown.
+ */
+ private static int findAddressOfWord(final FusionDictionary dict, final String word) {
+ return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress;
+ }
+
+ /**
+ * Computes the actual node size, based on the cached addresses of the children nodes.
+ *
+ * Each node stores its tentative address. During dictionary address computing, these
+ * are not final, but they can be used to compute the node size (the node size depends
+ * on the address of the children because the number of bytes necessary to store an
+ * address depends on its numeric value. The return value indicates whether the node
+ * contents (as in, any of the addresses stored in the cache fields) have changed with
+ * respect to their previous value.
+ *
+ * @param node the node to compute the size of.
+ * @param dict the dictionary in which the word/attributes are to be found.
+ * @return false if none of the cached addresses inside the node changed, true otherwise.
+ */
+ private static boolean computeActualNodeSize(Node node, FusionDictionary dict) {
+ boolean changed = false;
+ int size = getGroupCountSize(node);
+ for (CharGroup group : node.mData) {
+ if (group.mCachedAddress != node.mCachedAddress + size) {
+ changed = true;
+ group.mCachedAddress = node.mCachedAddress + size;
+ }
+ int groupSize = GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
+ if (group.isTerminal()) groupSize += GROUP_FREQUENCY_SIZE;
+ if (null != group.mChildren) {
+ final int offsetBasePoint= groupSize + node.mCachedAddress + size;
+ final int offset = group.mChildren.mCachedAddress - offsetBasePoint;
+ groupSize += getByteSize(offset);
+ }
+ groupSize += getShortcutListSize(group.mShortcutTargets);
+ if (null != group.mBigrams) {
+ for (WeightedString bigram : group.mBigrams) {
+ final int offsetBasePoint = groupSize + node.mCachedAddress + size
+ + GROUP_FLAGS_SIZE;
+ final int addressOfBigram = findAddressOfWord(dict, bigram.mWord);
+ final int offset = addressOfBigram - offsetBasePoint;
+ groupSize += getByteSize(offset) + GROUP_FLAGS_SIZE;
+ }
+ }
+ group.mCachedSize = groupSize;
+ size += groupSize;
+ }
+ if (node.mCachedSize != size) {
+ node.mCachedSize = size;
+ changed = true;
+ }
+ return changed;
+ }
+
+ /**
+ * Computes the byte size of a list of nodes and updates each node cached position.
+ *
+ * @param flatNodes the array of nodes.
+ * @return the byte size of the entire stack.
+ */
+ private static int stackNodes(ArrayList<Node> flatNodes) {
+ int nodeOffset = 0;
+ for (Node n : flatNodes) {
+ n.mCachedAddress = nodeOffset;
+ int groupCountSize = getGroupCountSize(n);
+ int groupOffset = 0;
+ for (CharGroup g : n.mData) {
+ g.mCachedAddress = groupCountSize + nodeOffset + groupOffset;
+ groupOffset += g.mCachedSize;
+ }
+ if (groupOffset + groupCountSize != n.mCachedSize) {
+ throw new RuntimeException("Bug : Stored and computed node size differ");
+ }
+ nodeOffset += n.mCachedSize;
+ }
+ return nodeOffset;
+ }
+
+ /**
+ * Compute the addresses and sizes of an ordered node array.
+ *
+ * This method takes a node array and will update its cached address and size values
+ * so that they can be written into a file. It determines the smallest size each of the
+ * nodes can be given the addresses of its children and attributes, and store that into
+ * each node.
+ * The order of the node is given by the order of the array. This method makes no effort
+ * to find a good order; it only mechanically computes the size this order results in.
+ *
+ * @param dict the dictionary
+ * @param flatNodes the ordered array of nodes
+ * @return the same array it was passed. The nodes have been updated for address and size.
+ */
+ private static ArrayList<Node> computeAddresses(FusionDictionary dict,
+ ArrayList<Node> flatNodes) {
+ // First get the worst sizes and offsets
+ for (Node n : flatNodes) setNodeMaximumSize(n);
+ final int offset = stackNodes(flatNodes);
+
+ MakedictLog.i("Compressing the array addresses. Original size : " + offset);
+ MakedictLog.i("(Recursively seen size : " + offset + ")");
+
+ int passes = 0;
+ boolean changesDone = false;
+ do {
+ changesDone = false;
+ for (Node n : flatNodes) {
+ final int oldNodeSize = n.mCachedSize;
+ final boolean changed = computeActualNodeSize(n, dict);
+ final int newNodeSize = n.mCachedSize;
+ if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!");
+ changesDone |= changed;
+ }
+ stackNodes(flatNodes);
+ ++passes;
+ if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
+ } while (changesDone);
+
+ final Node lastNode = flatNodes.get(flatNodes.size() - 1);
+ MakedictLog.i("Compression complete in " + passes + " passes.");
+ MakedictLog.i("After address compression : "
+ + (lastNode.mCachedAddress + lastNode.mCachedSize));
+
+ return flatNodes;
+ }
+
+ /**
+ * Sanity-checking method.
+ *
+ * This method checks an array of node for juxtaposition, that is, it will do
+ * nothing if each node's cached address is actually the previous node's address
+ * plus the previous node's size.
+ * If this is not the case, it will throw an exception.
+ *
+ * @param array the array node to check
+ */
+ private static void checkFlatNodeArray(ArrayList<Node> array) {
+ int offset = 0;
+ int index = 0;
+ for (Node n : array) {
+ if (n.mCachedAddress != offset) {
+ throw new RuntimeException("Wrong address for node " + index
+ + " : expected " + offset + ", got " + n.mCachedAddress);
+ }
+ ++index;
+ offset += n.mCachedSize;
+ }
+ }
+
+ /**
+ * Helper method to write a variable-size address to a file.
+ *
+ * @param buffer the buffer to write to.
+ * @param index the index in the buffer to write the address to.
+ * @param address the address to write.
+ * @return the size in bytes the address actually took.
+ */
+ private static int writeVariableAddress(final byte[] buffer, int index, final int address) {
+ switch (getByteSize(address)) {
+ case 1:
+ buffer[index++] = (byte)address;
+ return 1;
+ case 2:
+ buffer[index++] = (byte)(0xFF & (address >> 8));
+ buffer[index++] = (byte)(0xFF & address);
+ return 2;
+ case 3:
+ buffer[index++] = (byte)(0xFF & (address >> 16));
+ buffer[index++] = (byte)(0xFF & (address >> 8));
+ buffer[index++] = (byte)(0xFF & address);
+ return 3;
+ case 0:
+ return 0;
+ default:
+ throw new RuntimeException("Address " + address + " has a strange size");
+ }
+ }
+
+ private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress,
+ final int childrenOffset) {
+ byte flags = 0;
+ if (group.mChars.length > 1) flags |= FLAG_HAS_MULTIPLE_CHARS;
+ if (group.mFrequency >= 0) {
+ flags |= FLAG_IS_TERMINAL;
+ }
+ if (null != group.mChildren) {
+ switch (getByteSize(childrenOffset)) {
+ case 1:
+ flags |= FLAG_GROUP_ADDRESS_TYPE_ONEBYTE;
+ break;
+ case 2:
+ flags |= FLAG_GROUP_ADDRESS_TYPE_TWOBYTES;
+ break;
+ case 3:
+ flags |= FLAG_GROUP_ADDRESS_TYPE_THREEBYTES;
+ break;
+ default:
+ throw new RuntimeException("Node with a strange address");
+ }
+ }
+ if (null != group.mShortcutTargets) {
+ if (DBG && 0 == group.mShortcutTargets.size()) {
+ throw new RuntimeException("0-sized shortcut list must be null");
+ }
+ flags |= FLAG_HAS_SHORTCUT_TARGETS;
+ }
+ if (null != group.mBigrams) {
+ if (DBG && 0 == group.mBigrams.size()) {
+ throw new RuntimeException("0-sized bigram list must be null");
+ }
+ flags |= FLAG_HAS_BIGRAMS;
+ }
+ return flags;
+ }
+
+ /**
+ * Makes the flag value for a bigram.
+ *
+ * @param more whether there are more bigrams after this one.
+ * @param offset the offset of the bigram.
+ * @param bigramFrequency the frequency of the bigram, 0..255.
+ * @param unigramFrequency the unigram frequency of the same word, 0..255.
+ * @param word the second bigram, for debugging purposes
+ * @return the flags
+ */
+ private static final int makeBigramFlags(final boolean more, final int offset,
+ int bigramFrequency, final int unigramFrequency, final String word) {
+ int bigramFlags = (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0)
+ + (offset < 0 ? FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0);
+ switch (getByteSize(offset)) {
+ case 1:
+ bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE;
+ break;
+ case 2:
+ bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES;
+ break;
+ case 3:
+ bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES;
+ break;
+ default:
+ throw new RuntimeException("Strange offset size");
+ }
+ if (unigramFrequency > bigramFrequency) {
+ MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word
+ + "\". Bigram freq is " + bigramFrequency + ", unigram freq for "
+ + word + " is " + unigramFrequency);
+ bigramFrequency = unigramFrequency;
+ }
+ // We compute the difference between 255 (which means probability = 1) and the
+ // unigram score. We split this into a number of discrete steps.
+ // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15
+ // represents an increase of 16 steps: a value of 15 will be interpreted as the median
+ // value of the 16th step. In all justice, if the bigram frequency is low enough to be
+ // rounded below the first step (which means it is less than half a step higher than the
+ // unigram frequency) then the unigram frequency itself is the best approximation of the
+ // bigram freq that we could possibly supply, hence we should *not* include this bigram
+ // in the file at all.
+ // until this is done, we'll write 0 and slightly overestimate this case.
+ // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step
+ // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to
+ // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the
+ // step size. Then we compute the start of the first step (the one where value 0 starts)
+ // by adding half-a-step to the unigramFrequency. From there, we compute the integer
+ // number of steps to the bigramFrequency. One last thing: we want our steps to include
+ // their lower bound and exclude their higher bound so we need to have the first step
+ // start at exactly 1 unit higher than floor(unigramFreq + half a step).
+ // Note : to reconstruct the score, the dictionary reader will need to divide
+ // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise, and add
+ // (discretizedFrequency + 0.5) times this value to get the median value of the step,
+ // which is the best approximation. This is how we get the most precise result with
+ // only four bits.
+ final float stepSize =
+ (MAX_TERMINAL_FREQUENCY - unigramFrequency) / (1.5f + MAX_BIGRAM_FREQUENCY);
+ final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f);
+ final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize);
+ // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1
+ // here. The best approximation would be the unigram freq itself, so we should not
+ // include this bigram in the dictionary. For now, register as 0, and live with the
+ // small over-estimation that we get in this case. TODO: actually remove this bigram
+ // if discretizedFrequency < 0.
+ final int finalBigramFrequency = discretizedFrequency > 0 ? discretizedFrequency : 0;
+ bigramFlags += finalBigramFrequency & FLAG_ATTRIBUTE_FREQUENCY;
+ return bigramFlags;
+ }
+
+ /**
+ * Makes the 2-byte value for options flags.
+ */
+ private static final int makeOptionsValue(final FusionDictionary dictionary) {
+ final DictionaryOptions options = dictionary.mOptions;
+ final boolean hasBigrams = dictionary.hasBigrams();
+ return (options.mFrenchLigatureProcessing ? FRENCH_LIGATURE_PROCESSING_FLAG : 0)
+ + (options.mGermanUmlautProcessing ? GERMAN_UMLAUT_PROCESSING_FLAG : 0)
+ + (hasBigrams ? CONTAINS_BIGRAMS_FLAG : 0);
+ }
+
+ /**
+ * Makes the flag value for a shortcut.
+ *
+ * @param more whether there are more attributes after this one.
+ * @param frequency the frequency of the attribute, 0..15
+ * @return the flags
+ */
+ private static final int makeShortcutFlags(final boolean more, final int frequency) {
+ return (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0) + (frequency & FLAG_ATTRIBUTE_FREQUENCY);
+ }
+
+ /**
+ * Write a node to memory. The node is expected to have its final position cached.
+ *
+ * This can be an empty map, but the more is inside the faster the lookups will be. It can
+ * be carried on as long as nodes do not move.
+ *
+ * @param dict the dictionary the node is a part of (for relative offsets).
+ * @param buffer the memory buffer to write to.
+ * @param node the node to write.
+ * @return the address of the END of the node.
+ */
+ private static int writePlacedNode(FusionDictionary dict, byte[] buffer, Node node) {
+ int index = node.mCachedAddress;
+
+ final int groupCount = node.mData.size();
+ final int countSize = getGroupCountSize(node);
+ if (1 == countSize) {
+ buffer[index++] = (byte)groupCount;
+ } else if (2 == countSize) {
+ // We need to signal 2-byte size by setting the top bit of the MSB to 1, so
+ // we | 0x80 to do this.
+ buffer[index++] = (byte)((groupCount >> 8) | 0x80);
+ buffer[index++] = (byte)(groupCount & 0xFF);
+ } else {
+ throw new RuntimeException("Strange size from getGroupCountSize : " + countSize);
+ }
+ int groupAddress = index;
+ for (int i = 0; i < groupCount; ++i) {
+ CharGroup group = node.mData.get(i);
+ if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not "
+ + "the same as the cached address of the group : "
+ + index + " <> " + group.mCachedAddress);
+ groupAddress += GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
+ // Sanity checks.
+ if (DBG && group.mFrequency > MAX_TERMINAL_FREQUENCY) {
+ throw new RuntimeException("A node has a frequency > " + MAX_TERMINAL_FREQUENCY
+ + " : " + group.mFrequency);
+ }
+ if (group.mFrequency >= 0) groupAddress += GROUP_FREQUENCY_SIZE;
+ final int childrenOffset = null == group.mChildren
+ ? NO_CHILDREN_ADDRESS : group.mChildren.mCachedAddress - groupAddress;
+ byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset);
+ buffer[index++] = flags;
+ index = CharEncoding.writeCharArray(group.mChars, buffer, index);
+ if (group.hasSeveralChars()) {
+ buffer[index++] = GROUP_CHARACTERS_TERMINATOR;
+ }
+ if (group.mFrequency >= 0) {
+ buffer[index++] = (byte) group.mFrequency;
+ }
+ final int shift = writeVariableAddress(buffer, index, childrenOffset);
+ index += shift;
+ groupAddress += shift;
+
+ // Write shortcuts
+ if (null != group.mShortcutTargets) {
+ final int indexOfShortcutByteSize = index;
+ index += GROUP_SHORTCUT_LIST_SIZE_SIZE;
+ groupAddress += GROUP_SHORTCUT_LIST_SIZE_SIZE;
+ final Iterator<WeightedString> shortcutIterator = group.mShortcutTargets.iterator();
+ while (shortcutIterator.hasNext()) {
+ final WeightedString target = shortcutIterator.next();
+ ++groupAddress;
+ int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(),
+ target.mFrequency);
+ buffer[index++] = (byte)shortcutFlags;
+ final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord);
+ index += shortcutShift;
+ groupAddress += shortcutShift;
+ }
+ final int shortcutByteSize = index - indexOfShortcutByteSize;
+ if (shortcutByteSize > 0xFFFF) {
+ throw new RuntimeException("Shortcut list too large");
+ }
+ buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8);
+ buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF);
+ }
+ // Write bigrams
+ if (null != group.mBigrams) {
+ final Iterator<WeightedString> bigramIterator = group.mBigrams.iterator();
+ while (bigramIterator.hasNext()) {
+ final WeightedString bigram = bigramIterator.next();
+ final CharGroup target =
+ FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord);
+ final int addressOfBigram = target.mCachedAddress;
+ final int unigramFrequencyForThisWord = target.mFrequency;
+ ++groupAddress;
+ final int offset = addressOfBigram - groupAddress;
+ int bigramFlags = makeBigramFlags(bigramIterator.hasNext(), offset,
+ bigram.mFrequency, unigramFrequencyForThisWord, bigram.mWord);
+ buffer[index++] = (byte)bigramFlags;
+ final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset));
+ index += bigramShift;
+ groupAddress += bigramShift;
+ }
+ }
+
+ }
+ if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException(
+ "Not the same size : written "
+ + (index - node.mCachedAddress) + " bytes out of a node that should have "
+ + node.mCachedSize + " bytes");
+ return index;
+ }
+
+ /**
+ * Dumps a collection of useful statistics about a node array.
+ *
+ * This prints purely informative stuff, like the total estimated file size, the
+ * number of nodes, of character groups, the repartition of each address size, etc
+ *
+ * @param nodes the node array.
+ */
+ private static void showStatistics(ArrayList<Node> nodes) {
+ int firstTerminalAddress = Integer.MAX_VALUE;
+ int lastTerminalAddress = Integer.MIN_VALUE;
+ int size = 0;
+ int charGroups = 0;
+ int maxGroups = 0;
+ int maxRuns = 0;
+ for (Node n : nodes) {
+ if (maxGroups < n.mData.size()) maxGroups = n.mData.size();
+ for (CharGroup cg : n.mData) {
+ ++charGroups;
+ if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length;
+ if (cg.mFrequency >= 0) {
+ if (n.mCachedAddress < firstTerminalAddress)
+ firstTerminalAddress = n.mCachedAddress;
+ if (n.mCachedAddress > lastTerminalAddress)
+ lastTerminalAddress = n.mCachedAddress;
+ }
+ }
+ if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize;
+ }
+ final int[] groupCounts = new int[maxGroups + 1];
+ final int[] runCounts = new int[maxRuns + 1];
+ for (Node n : nodes) {
+ ++groupCounts[n.mData.size()];
+ for (CharGroup cg : n.mData) {
+ ++runCounts[cg.mChars.length];
+ }
+ }
+
+ MakedictLog.i("Statistics:\n"
+ + " total file size " + size + "\n"
+ + " " + nodes.size() + " nodes\n"
+ + " " + charGroups + " groups (" + ((float)charGroups / nodes.size())
+ + " groups per node)\n"
+ + " first terminal at " + firstTerminalAddress + "\n"
+ + " last terminal at " + lastTerminalAddress + "\n"
+ + " Group stats : max = " + maxGroups);
+ for (int i = 0; i < groupCounts.length; ++i) {
+ MakedictLog.i(" " + i + " : " + groupCounts[i]);
+ }
+ MakedictLog.i(" Character run stats : max = " + maxRuns);
+ for (int i = 0; i < runCounts.length; ++i) {
+ MakedictLog.i(" " + i + " : " + runCounts[i]);
+ }
+ }
+
+ /**
+ * Dumps a FusionDictionary to a file.
+ *
+ * This is the public entry point to write a dictionary to a file.
+ *
+ * @param destination the stream to write the binary data to.
+ * @param dict the dictionary to write.
+ * @param version the version of the format to write, currently either 1 or 2.
+ */
+ public static void writeDictionaryBinary(final OutputStream destination,
+ final FusionDictionary dict, final int version)
+ throws IOException, UnsupportedFormatException {
+
+ // Addresses are limited to 3 bytes, but since addresses can be relative to each node, the
+ // structure itself is not limited to 16MB. However, if it is over 16MB deciding the order
+ // of the nodes becomes a quite complicated problem, because though the dictionary itself
+ // does not have a size limit, each node must still be within 16MB of all its children and
+ // parents. As long as this is ensured, the dictionary file may grow to any size.
+
+ if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION) {
+ throw new UnsupportedFormatException("Requested file format version " + version
+ + ", but this implementation only supports versions "
+ + MINIMUM_SUPPORTED_VERSION + " through " + MAXIMUM_SUPPORTED_VERSION);
+ }
+
+ ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);
+
+ // The magic number in big-endian order.
+ if (version >= FIRST_VERSION_WITH_HEADER_SIZE) {
+ // Magic number for version 2+.
+ headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 24)));
+ headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 16)));
+ headerBuffer.write((byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 8)));
+ headerBuffer.write((byte) (0xFF & VERSION_2_MAGIC_NUMBER));
+ // Dictionary version.
+ headerBuffer.write((byte) (0xFF & (version >> 8)));
+ headerBuffer.write((byte) (0xFF & version));
+ } else {
+ // Magic number for version 1.
+ headerBuffer.write((byte) (0xFF & (VERSION_1_MAGIC_NUMBER >> 8)));
+ headerBuffer.write((byte) (0xFF & VERSION_1_MAGIC_NUMBER));
+ // Dictionary version.
+ headerBuffer.write((byte) (0xFF & version));
+ }
+ // Options flags
+ final int options = makeOptionsValue(dict);
+ headerBuffer.write((byte) (0xFF & (options >> 8)));
+ headerBuffer.write((byte) (0xFF & options));
+ if (version >= FIRST_VERSION_WITH_HEADER_SIZE) {
+ final int headerSizeOffset = headerBuffer.size();
+ // Placeholder to be written later with header size.
+ for (int i = 0; i < 4; ++i) {
+ headerBuffer.write(0);
+ }
+ // Write out the options.
+ for (final String key : dict.mOptions.mAttributes.keySet()) {
+ final String value = dict.mOptions.mAttributes.get(key);
+ CharEncoding.writeString(headerBuffer, key);
+ CharEncoding.writeString(headerBuffer, value);
+ }
+ final int size = headerBuffer.size();
+ final byte[] bytes = headerBuffer.toByteArray();
+ // Write out the header size.
+ bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
+ bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
+ bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
+ bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
+ destination.write(bytes);
+ } else {
+ headerBuffer.writeTo(destination);
+ }
+
+ headerBuffer.close();
+
+ // Leave the choice of the optimal node order to the flattenTree function.
+ MakedictLog.i("Flattening the tree...");
+ ArrayList<Node> flatNodes = flattenTree(dict.mRoot);
+
+ MakedictLog.i("Computing addresses...");
+ computeAddresses(dict, flatNodes);
+ MakedictLog.i("Checking array...");
+ if (DBG) checkFlatNodeArray(flatNodes);
+
+ // Create a buffer that matches the final dictionary size.
+ final Node lastNode = flatNodes.get(flatNodes.size() - 1);
+ final int bufferSize =(lastNode.mCachedAddress + lastNode.mCachedSize);
+ final byte[] buffer = new byte[bufferSize];
+ int index = 0;
+
+ MakedictLog.i("Writing file...");
+ int dataEndOffset = 0;
+ for (Node n : flatNodes) {
+ dataEndOffset = writePlacedNode(dict, buffer, n);
+ }
+
+ if (DBG) showStatistics(flatNodes);
+
+ destination.write(buffer, 0, dataEndOffset);
+
+ destination.close();
+ MakedictLog.i("Done");
+ }
+
+
+ // Input methods: Read a binary dictionary to memory.
+ // readDictionaryBinary is the public entry point for them.
+
+ static final int[] characterBuffer = new int[MAX_WORD_LENGTH];
+ private static CharGroupInfo readCharGroup(RandomAccessFile source,
+ final int originalGroupAddress) throws IOException {
+ int addressPointer = originalGroupAddress;
+ final int flags = source.readUnsignedByte();
+ ++addressPointer;
+ final int characters[];
+ if (0 != (flags & FLAG_HAS_MULTIPLE_CHARS)) {
+ int index = 0;
+ int character = CharEncoding.readChar(source);
+ addressPointer += CharEncoding.getCharSize(character);
+ while (-1 != character) {
+ characterBuffer[index++] = character;
+ character = CharEncoding.readChar(source);
+ addressPointer += CharEncoding.getCharSize(character);
+ }
+ characters = Arrays.copyOfRange(characterBuffer, 0, index);
+ } else {
+ final int character = CharEncoding.readChar(source);
+ addressPointer += CharEncoding.getCharSize(character);
+ characters = new int[] { character };
+ }
+ final int frequency;
+ if (0 != (FLAG_IS_TERMINAL & flags)) {
+ ++addressPointer;
+ frequency = source.readUnsignedByte();
+ } else {
+ frequency = CharGroup.NOT_A_TERMINAL;
+ }
+ int childrenAddress = addressPointer;
+ switch (flags & MASK_GROUP_ADDRESS_TYPE) {
+ case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
+ childrenAddress += source.readUnsignedByte();
+ addressPointer += 1;
+ break;
+ case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
+ childrenAddress += source.readUnsignedShort();
+ addressPointer += 2;
+ break;
+ case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
+ childrenAddress += (source.readUnsignedByte() << 16) + source.readUnsignedShort();
+ addressPointer += 3;
+ break;
+ case FLAG_GROUP_ADDRESS_TYPE_NOADDRESS:
+ default:
+ childrenAddress = NO_CHILDREN_ADDRESS;
+ break;
+ }
+ ArrayList<WeightedString> shortcutTargets = null;
+ if (0 != (flags & FLAG_HAS_SHORTCUT_TARGETS)) {
+ final long pointerBefore = source.getFilePointer();
+ shortcutTargets = new ArrayList<WeightedString>();
+ source.readUnsignedShort(); // Skip the size
+ while (true) {
+ final int targetFlags = source.readUnsignedByte();
+ final String word = CharEncoding.readString(source);
+ shortcutTargets.add(new WeightedString(word,
+ targetFlags & FLAG_ATTRIBUTE_FREQUENCY));
+ if (0 == (targetFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break;
+ }
+ addressPointer += (source.getFilePointer() - pointerBefore);
+ }
+ ArrayList<PendingAttribute> bigrams = null;
+ if (0 != (flags & FLAG_HAS_BIGRAMS)) {
+ bigrams = new ArrayList<PendingAttribute>();
+ while (true) {
+ final int bigramFlags = source.readUnsignedByte();
+ ++addressPointer;
+ final int sign = 0 == (bigramFlags & FLAG_ATTRIBUTE_OFFSET_NEGATIVE) ? 1 : -1;
+ int bigramAddress = addressPointer;
+ switch (bigramFlags & MASK_ATTRIBUTE_ADDRESS_TYPE) {
+ case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE:
+ bigramAddress += sign * source.readUnsignedByte();
+ addressPointer += 1;
+ break;
+ case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES:
+ bigramAddress += sign * source.readUnsignedShort();
+ addressPointer += 2;
+ break;
+ case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES:
+ final int offset = ((source.readUnsignedByte() << 16)
+ + source.readUnsignedShort());
+ bigramAddress += sign * offset;
+ addressPointer += 3;
+ break;
+ default:
+ throw new RuntimeException("Has bigrams with no address");
+ }
+ bigrams.add(new PendingAttribute(bigramFlags & FLAG_ATTRIBUTE_FREQUENCY,
+ bigramAddress));
+ if (0 == (bigramFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break;
+ }
+ }
+ return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency,
+ childrenAddress, shortcutTargets, bigrams);
+ }
+
+ /**
+ * Reads and returns the char group count out of a file and forwards the pointer.
+ */
+ private static int readCharGroupCount(RandomAccessFile source) throws IOException {
+ final int msb = source.readUnsignedByte();
+ if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) {
+ return msb;
+ } else {
+ return ((MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8)
+ + source.readUnsignedByte();
+ }
+ }
+
+ // The word cache here is a stopgap bandaid to help the catastrophic performance
+ // of this method. Since it performs direct, unbuffered random access to the file and
+ // may be called hundreds of thousands of times, the resulting performance is not
+ // reasonable without some kind of cache. Thus:
+ // TODO: perform buffered I/O here and in other places in the code.
+ private static TreeMap<Integer, String> wordCache = new TreeMap<Integer, String>();
+ /**
+ * Finds, as a string, the word at the address passed as an argument.
+ *
+ * @param source the file to read from.
+ * @param headerSize the size of the header.
+ * @param address the address to seek.
+ * @return the word, as a string.
+ * @throws IOException if the file can't be read.
+ */
+ private static String getWordAtAddress(final RandomAccessFile source, final long headerSize,
+ int address) throws IOException {
+ final String cachedString = wordCache.get(address);
+ if (null != cachedString) return cachedString;
+ final long originalPointer = source.getFilePointer();
+ source.seek(headerSize);
+ final int count = readCharGroupCount(source);
+ int groupOffset = getGroupCountSize(count);
+ final StringBuilder builder = new StringBuilder();
+ String result = null;
+
+ CharGroupInfo last = null;
+ for (int i = count - 1; i >= 0; --i) {
+ CharGroupInfo info = readCharGroup(source, groupOffset);
+ groupOffset = info.mEndAddress;
+ if (info.mOriginalAddress == address) {
+ builder.append(new String(info.mCharacters, 0, info.mCharacters.length));
+ result = builder.toString();
+ break; // and return
+ }
+ if (hasChildrenAddress(info.mChildrenAddress)) {
+ if (info.mChildrenAddress > address) {
+ if (null == last) continue;
+ builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
+ source.seek(last.mChildrenAddress + headerSize);
+ groupOffset = last.mChildrenAddress + 1;
+ i = source.readUnsignedByte();
+ last = null;
+ continue;
+ }
+ last = info;
+ }
+ if (0 == i && hasChildrenAddress(last.mChildrenAddress)) {
+ builder.append(new String(last.mCharacters, 0, last.mCharacters.length));
+ source.seek(last.mChildrenAddress + headerSize);
+ groupOffset = last.mChildrenAddress + 1;
+ i = source.readUnsignedByte();
+ last = null;
+ continue;
+ }
+ }
+ source.seek(originalPointer);
+ wordCache.put(address, result);
+ return result;
+ }
+
+ /**
+ * Reads a single node from a binary file.
+ *
+ * This methods reads the file at the current position of its file pointer. A node is
+ * fully expected to start at the current position.
+ * This will recursively read other nodes into the structure, populating the reverse
+ * maps on the fly and using them to keep track of already read nodes.
+ *
+ * @param source the data file, correctly positioned at the start of a node.
+ * @param headerSize the size, in bytes, of the file header.
+ * @param reverseNodeMap a mapping from addresses to already read nodes.
+ * @param reverseGroupMap a mapping from addresses to already read character groups.
+ * @return the read node with all his children already read.
+ */
+ private static Node readNode(RandomAccessFile source, long headerSize,
+ Map<Integer, Node> reverseNodeMap, Map<Integer, CharGroup> reverseGroupMap)
+ throws IOException {
+ final int nodeOrigin = (int)(source.getFilePointer() - headerSize);
+ final int count = readCharGroupCount(source);
+ final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>();
+ int groupOffset = nodeOrigin + getGroupCountSize(count);
+ for (int i = count; i > 0; --i) {
+ CharGroupInfo info = readCharGroup(source, groupOffset);
+ ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets;
+ ArrayList<WeightedString> bigrams = null;
+ if (null != info.mBigrams) {
+ bigrams = new ArrayList<WeightedString>();
+ for (PendingAttribute bigram : info.mBigrams) {
+ final String word = getWordAtAddress(source, headerSize, bigram.mAddress);
+ bigrams.add(new WeightedString(word, bigram.mFrequency));
+ }
+ }
+ if (hasChildrenAddress(info.mChildrenAddress)) {
+ Node children = reverseNodeMap.get(info.mChildrenAddress);
+ if (null == children) {
+ final long currentPosition = source.getFilePointer();
+ source.seek(info.mChildrenAddress + headerSize);
+ children = readNode(source, headerSize, reverseNodeMap, reverseGroupMap);
+ source.seek(currentPosition);
+ }
+ nodeContents.add(
+ new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency,
+ children));
+ } else {
+ nodeContents.add(
+ new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency));
+ }
+ groupOffset = info.mEndAddress;
+ }
+ final Node node = new Node(nodeContents);
+ node.mCachedAddress = nodeOrigin;
+ reverseNodeMap.put(node.mCachedAddress, node);
+ return node;
+ }
+
+ /**
+ * Helper function to get the binary format version from the header.
+ */
+ private static int getFormatVersion(final RandomAccessFile source) throws IOException {
+ final int magic_v1 = source.readUnsignedShort();
+ if (VERSION_1_MAGIC_NUMBER == magic_v1) return source.readUnsignedByte();
+ final int magic_v2 = (magic_v1 << 16) + source.readUnsignedShort();
+ if (VERSION_2_MAGIC_NUMBER == magic_v2) return source.readUnsignedShort();
+ return NOT_A_VERSION_NUMBER;
+ }
+
+ /**
+ * Reads a random access file and returns the memory representation of the dictionary.
+ *
+ * This high-level method takes a binary file and reads its contents, populating a
+ * FusionDictionary structure. The optional dict argument is an existing dictionary to
+ * which words from the file should be added. If it is null, a new dictionary is created.
+ *
+ * @param source the file to read.
+ * @param dict an optional dictionary to add words to, or null.
+ * @return the created (or merged) dictionary.
+ */
+ public static FusionDictionary readDictionaryBinary(final RandomAccessFile source,
+ final FusionDictionary dict) throws IOException, UnsupportedFormatException {
+ // Check file version
+ final int version = getFormatVersion(source);
+ if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION ) {
+ throw new UnsupportedFormatException("This file has version " + version
+ + ", but this implementation does not support versions above "
+ + MAXIMUM_SUPPORTED_VERSION);
+ }
+
+ // Read options
+ final int optionsFlags = source.readUnsignedShort();
+
+ final long headerSize;
+ final HashMap<String, String> options = new HashMap<String, String>();
+ if (version < FIRST_VERSION_WITH_HEADER_SIZE) {
+ headerSize = source.getFilePointer();
+ } else {
+ headerSize = (source.readUnsignedByte() << 24) + (source.readUnsignedByte() << 16)
+ + (source.readUnsignedByte() << 8) + source.readUnsignedByte();
+ while (source.getFilePointer() < headerSize) {
+ final String key = CharEncoding.readString(source);
+ final String value = CharEncoding.readString(source);
+ options.put(key, value);
+ }
+ source.seek(headerSize);
+ }
+
+ Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>();
+ Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>();
+ final Node root = readNode(source, headerSize, reverseNodeMapping, reverseGroupMapping);
+
+ FusionDictionary newDict = new FusionDictionary(root,
+ new FusionDictionary.DictionaryOptions(options,
+ 0 != (optionsFlags & GERMAN_UMLAUT_PROCESSING_FLAG),
+ 0 != (optionsFlags & FRENCH_LIGATURE_PROCESSING_FLAG)));
+ if (null != dict) {
+ for (final Word w : dict) {
+ newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets);
+ }
+ for (final Word w : dict) {
+ // By construction a binary dictionary may not have bigrams pointing to
+ // words that are not also registered as unigrams so we don't have to avoid
+ // them explicitly here.
+ for (final WeightedString bigram : w.mBigrams) {
+ newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency);
+ }
+ }
+ }
+
+ return newDict;
+ }
+
+ /**
+ * Basic test to find out whether the file is a binary dictionary or not.
+ *
+ * Concretely this only tests the magic number.
+ *
+ * @param filename The name of the file to test.
+ * @return true if it's a binary dictionary, false otherwise
+ */
+ public static boolean isBinaryDictionary(final String filename) {
+ try {
+ RandomAccessFile f = new RandomAccessFile(filename, "r");
+ final int version = getFormatVersion(f);
+ return (version >= MINIMUM_SUPPORTED_VERSION && version <= MAXIMUM_SUPPORTED_VERSION);
+ } catch (FileNotFoundException e) {
+ return false;
+ } catch (IOException e) {
+ return false;
+ }
+ }
+}