diff options
author | 2012-03-21 18:10:21 +0900 | |
---|---|---|
committer | 2012-03-21 19:30:26 +0900 | |
commit | e276c2401e5702222b21c4dfe2a25219c2f6619f (patch) | |
tree | 46c7b2bafab5d5cf600b5ce922e34f5bd6d42617 /java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java | |
parent | 1fe943aabdf6c9a40c634bf4a5450cbed4f6c136 (diff) | |
download | latinime-e276c2401e5702222b21c4dfe2a25219c2f6619f.tar.gz latinime-e276c2401e5702222b21c4dfe2a25219c2f6619f.tar.xz latinime-e276c2401e5702222b21c4dfe2a25219c2f6619f.zip |
Move makedict to LatinIME android keyboard.
Bug: 6188977
Change-Id: I4d2ef504bb983abbda3cb52ee450cb46f58d95cf
Diffstat (limited to 'java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java')
-rw-r--r-- | java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java | 1208 |
1 files changed, 1208 insertions, 0 deletions
diff --git a/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java b/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java new file mode 100644 index 000000000..42dd4df34 --- /dev/null +++ b/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java @@ -0,0 +1,1208 @@ +/* + * Copyright (C) 2011 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); you may not + * use this file except in compliance with the License. You may obtain a copy of + * the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the + * License for the specific language governing permissions and limitations under + * the License. + */ + +package com.android.inputmethod.latin.makedict; + +import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup; +import com.android.inputmethod.latin.makedict.FusionDictionary.Node; +import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString; + +import java.io.FileNotFoundException; +import java.io.IOException; +import java.io.OutputStream; +import java.io.RandomAccessFile; +import java.util.ArrayList; +import java.util.Arrays; +import java.util.Iterator; +import java.util.Map; +import java.util.TreeMap; + +/** + * Reads and writes XML files for a FusionDictionary. + * + * All the methods in this class are static. + */ +public class BinaryDictInputOutput { + + /* Node layout is as follows: + * | addressType xx : mask with MASK_GROUP_ADDRESS_TYPE + * 2 bits, 00 = no children : FLAG_GROUP_ADDRESS_TYPE_NOADDRESS + * f | 01 = 1 byte : FLAG_GROUP_ADDRESS_TYPE_ONEBYTE + * l | 10 = 2 bytes : FLAG_GROUP_ADDRESS_TYPE_TWOBYTES + * a | 11 = 3 bytes : FLAG_GROUP_ADDRESS_TYPE_THREEBYTES + * g | has several chars ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_MULTIPLE_CHARS + * s | has a terminal ? 1 bit, 1 = yes, 0 = no : FLAG_IS_TERMINAL + * | has shortcut targets ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_SHORTCUT_TARGETS + * | has bigrams ? 1 bit, 1 = yes, 0 = no : FLAG_HAS_BIGRAMS + * | is shortcut only ? 1 bit, 1 = yes, 0 = no : FLAG_IS_SHORTCUT_ONLY + * + * c | IF FLAG_HAS_MULTIPLE_CHARS + * h | char, char, char, char n * (1 or 3 bytes) : use CharGroupInfo for i/o helpers + * a | end 1 byte, = 0 + * r | ELSE + * s | char 1 or 3 bytes + * | END + * + * f | + * r | IF FLAG_IS_TERMINAL + * e | frequency 1 byte + * q | + * + * c | IF 00 = FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = addressType + * h | // nothing + * i | ELSIF 01 = FLAG_GROUP_ADDRESS_TYPE_ONEBYTE == addressType + * l | children address, 1 byte + * d | ELSIF 10 = FLAG_GROUP_ADDRESS_TYPE_TWOBYTES == addressType + * r | children address, 2 bytes + * e | ELSE // 11 = FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = addressType + * n | children address, 3 bytes + * A | END + * d + * dress + * + * | IF FLAG_IS_TERMINAL && FLAG_HAS_SHORTCUT_TARGETS + * | shortcut targets address list + * | IF FLAG_IS_TERMINAL && FLAG_HAS_BIGRAMS + * | bigrams address list + * + * Char format is: + * 1 byte = bbbbbbbb match + * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte + * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because + * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with + * 00011111 would be outside unicode. + * else: iso-latin-1 code + * This allows for the whole unicode range to be encoded, including chars outside of + * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control + * characters which should never happen anyway (and still work, but take 3 bytes). + * + * bigram and shortcut address list is: + * <flags> = | hasNext = 1 bit, 1 = yes, 0 = no : FLAG_ATTRIBUTE_HAS_NEXT + * | addressSign = 1 bit, : FLAG_ATTRIBUTE_OFFSET_NEGATIVE + * | 1 = must take -address, 0 = must take +address + * | xx : mask with MASK_ATTRIBUTE_ADDRESS_TYPE + * | addressFormat = 2 bits, 00 = unused : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE + * | 01 = 1 byte : FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE + * | 10 = 2 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES + * | 11 = 3 bytes : FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES + * | 4 bits : frequency : mask with FLAG_ATTRIBUTE_FREQUENCY + * <address> | IF (01 == FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE == addressFormat) + * | read 1 byte, add top 4 bits + * | ELSIF (10 == FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES == addressFormat) + * | read 2 bytes, add top 4 bits + * | ELSE // 11 == FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES == addressFormat + * | read 3 bytes, add top 4 bits + * | END + * | if (FLAG_ATTRIBUTE_OFFSET_NEGATIVE) then address = -address + * if (FLAG_ATTRIBUTE_HAS_NET) goto bigram_and_shortcut_address_list_is + * + */ + + private static final int VERSION_1_MAGIC_NUMBER = 0x78B1; + private static final int VERSION_2_MAGIC_NUMBER = 0x9BC13AFE; + private static final int MINIMUM_SUPPORTED_VERSION = 1; + private static final int MAXIMUM_SUPPORTED_VERSION = 2; + private static final int NOT_A_VERSION_NUMBER = -1; + private static final int FIRST_VERSION_WITH_HEADER_SIZE = 2; + + // No options yet, reserved for future use. + private static final int OPTIONS = 0; + + // TODO: Make this value adaptative to content data, store it in the header, and + // use it in the reading code. + private static final int MAX_WORD_LENGTH = 48; + + private static final int MASK_GROUP_ADDRESS_TYPE = 0xC0; + private static final int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00; + private static final int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40; + private static final int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80; + private static final int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0; + + private static final int FLAG_HAS_MULTIPLE_CHARS = 0x20; + + private static final int FLAG_IS_TERMINAL = 0x10; + private static final int FLAG_HAS_SHORTCUT_TARGETS = 0x08; + private static final int FLAG_HAS_BIGRAMS = 0x04; + private static final int FLAG_IS_SHORTCUT_ONLY = 0x02; + + private static final int FLAG_ATTRIBUTE_HAS_NEXT = 0x80; + private static final int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40; + private static final int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30; + private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10; + private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20; + private static final int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30; + private static final int FLAG_ATTRIBUTE_FREQUENCY = 0x0F; + + private static final int GROUP_CHARACTERS_TERMINATOR = 0x1F; + + private static final int GROUP_TERMINATOR_SIZE = 1; + private static final int GROUP_FLAGS_SIZE = 1; + private static final int GROUP_FREQUENCY_SIZE = 1; + private static final int GROUP_MAX_ADDRESS_SIZE = 3; + private static final int GROUP_ATTRIBUTE_FLAGS_SIZE = 1; + private static final int GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE = 3; + + private static final int NO_CHILDREN_ADDRESS = Integer.MIN_VALUE; + private static final int INVALID_CHARACTER = -1; + + private static final int MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT = 0x7F; // 127 + private static final int MAX_CHARGROUPS_IN_A_NODE = 0x7FFF; // 32767 + + private static final int MAX_TERMINAL_FREQUENCY = 255; + + /** + * A class grouping utility function for our specific character encoding. + */ + private static class CharEncoding { + + private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20; + private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF; + + /** + * Helper method to find out whether this code fits on one byte + */ + private static boolean fitsOnOneByte(int character) { + return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE + && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE; + } + + /** + * Compute the size of a character given its character code. + * + * Char format is: + * 1 byte = bbbbbbbb match + * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte + * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because + * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with + * 00011111 would be outside unicode. + * else: iso-latin-1 code + * This allows for the whole unicode range to be encoded, including chars outside of + * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control + * characters which should never happen anyway (and still work, but take 3 bytes). + * + * @param character the character code. + * @return the size in binary encoded-form, either 1 or 3 bytes. + */ + private static int getCharSize(int character) { + // See char encoding in FusionDictionary.java + if (fitsOnOneByte(character)) return 1; + if (INVALID_CHARACTER == character) return 1; + return 3; + } + + /** + * Compute the byte size of a character array. + */ + private static int getCharArraySize(final int[] chars) { + int size = 0; + for (int character : chars) size += getCharSize(character); + return size; + } + + /** + * Writes a char array to a byte buffer. + * + * @param characters the character array to write. + * @param buffer the byte buffer to write to. + * @param index the index in buffer to write the character array to. + * @return the index after the last character. + */ + private static int writeCharArray(int[] characters, byte[] buffer, int index) { + for (int character : characters) { + if (1 == getCharSize(character)) { + buffer[index++] = (byte)character; + } else { + buffer[index++] = (byte)(0xFF & (character >> 16)); + buffer[index++] = (byte)(0xFF & (character >> 8)); + buffer[index++] = (byte)(0xFF & character); + } + } + return index; + } + + /** + * Reads a character from the file. + * + * This follows the character format documented earlier in this source file. + * + * @param source the file, positioned over an encoded character. + * @return the character code. + */ + private static int readChar(RandomAccessFile source) throws IOException { + int character = source.readUnsignedByte(); + if (!fitsOnOneByte(character)) { + if (GROUP_CHARACTERS_TERMINATOR == character) + return INVALID_CHARACTER; + character <<= 16; + character += source.readUnsignedShort(); + } + return character; + } + } + + /** + * Compute the binary size of the character array in a group + * + * If only one character, this is the size of this character. If many, it's the sum of their + * sizes + 1 byte for the terminator. + * + * @param group the group + * @return the size of the char array, including the terminator if any + */ + private static int getGroupCharactersSize(CharGroup group) { + int size = CharEncoding.getCharArraySize(group.mChars); + if (group.hasSeveralChars()) size += GROUP_TERMINATOR_SIZE; + return size; + } + + /** + * Compute the binary size of the group count + * @param count the group count + * @return the size of the group count, either 1 or 2 bytes. + */ + private static int getGroupCountSize(final int count) { + if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= count) { + return 1; + } else if (MAX_CHARGROUPS_IN_A_NODE >= count) { + return 2; + } else { + throw new RuntimeException("Can't have more than " + MAX_CHARGROUPS_IN_A_NODE + + " groups in a node (found " + count +")"); + } + } + + /** + * Compute the binary size of the group count for a node + * @param node the node + * @return the size of the group count, either 1 or 2 bytes. + */ + private static int getGroupCountSize(final Node node) { + return getGroupCountSize(node.mData.size()); + } + + /** + * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything. + * + * @param group the CharGroup to compute the size of. + * @return the maximum size of the group. + */ + private static int getCharGroupMaximumSize(CharGroup group) { + int size = getGroupCharactersSize(group) + GROUP_FLAGS_SIZE; + // If terminal, one byte for the frequency + if (group.isTerminal()) size += GROUP_FREQUENCY_SIZE; + size += GROUP_MAX_ADDRESS_SIZE; // For children address + if (null != group.mShortcutTargets) { + size += (GROUP_ATTRIBUTE_FLAGS_SIZE + GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE) + * group.mShortcutTargets.size(); + } + if (null != group.mBigrams) { + size += (GROUP_ATTRIBUTE_FLAGS_SIZE + GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE) + * group.mBigrams.size(); + } + return size; + } + + /** + * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches + * it in the 'actualSize' member of the node. + * + * @param node the node to compute the maximum size of. + */ + private static void setNodeMaximumSize(Node node) { + int size = getGroupCountSize(node); + for (CharGroup g : node.mData) { + final int groupSize = getCharGroupMaximumSize(g); + g.mCachedSize = groupSize; + size += groupSize; + } + node.mCachedSize = size; + } + + /** + * Helper method to hide the actual value of the no children address. + */ + private static boolean hasChildrenAddress(int address) { + return NO_CHILDREN_ADDRESS != address; + } + + /** + * Helper method to find out if a character info is a shortcut only. + */ + private static boolean isShortcutOnly(final CharGroupInfo info) { + return 0 != (info.mFlags & FLAG_IS_SHORTCUT_ONLY); + } + + /** + * Compute the size, in bytes, that an address will occupy. + * + * This can be used either for children addresses (which are always positive) or for + * attribute, which may be positive or negative but + * store their sign bit separately. + * + * @param address the address + * @return the byte size. + */ + private static int getByteSize(int address) { + assert(address < 0x1000000); + if (!hasChildrenAddress(address)) { + return 0; + } else if (Math.abs(address) < 0x100) { + return 1; + } else if (Math.abs(address) < 0x10000) { + return 2; + } else { + return 3; + } + } + // End utility methods. + + // This method is responsible for finding a nice ordering of the nodes that favors run-time + // cache performance and dictionary size. + /* package for tests */ static ArrayList<Node> flattenTree(Node root) { + final int treeSize = FusionDictionary.countCharGroups(root); + MakedictLog.i("Counted nodes : " + treeSize); + final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize); + return flattenTreeInner(flatTree, root); + } + + private static ArrayList<Node> flattenTreeInner(ArrayList<Node> list, Node node) { + // Removing the node is necessary if the tails are merged, because we would then + // add the same node several times when we only want it once. A number of places in + // the code also depends on any node being only once in the list. + // Merging tails can only be done if there are no attributes. Searching for attributes + // in LatinIME code depends on a total breadth-first ordering, which merging tails + // breaks. If there are no attributes, it should be fine (and reduce the file size) + // to merge tails, and the following step would be necessary. + // If eventually the code runs on Android, searching through the whole array each time + // may be a performance concern. + list.remove(node); + list.add(node); + final ArrayList<CharGroup> branches = node.mData; + final int nodeSize = branches.size(); + for (CharGroup group : branches) { + if (null != group.mChildren) flattenTreeInner(list, group.mChildren); + } + return list; + } + + /** + * Finds the absolute address of a word in the dictionary. + * + * @param dict the dictionary in which to search. + * @param word the word we are searching for. + * @return the word address. If it is not found, an exception is thrown. + */ + private static int findAddressOfWord(final FusionDictionary dict, final String word) { + return FusionDictionary.findWordInTree(dict.mRoot, word).mCachedAddress; + } + + /** + * Computes the actual node size, based on the cached addresses of the children nodes. + * + * Each node stores its tentative address. During dictionary address computing, these + * are not final, but they can be used to compute the node size (the node size depends + * on the address of the children because the number of bytes necessary to store an + * address depends on its numeric value. + * + * @param node the node to compute the size of. + * @param dict the dictionary in which the word/attributes are to be found. + */ + private static void computeActualNodeSize(Node node, FusionDictionary dict) { + int size = getGroupCountSize(node); + for (CharGroup group : node.mData) { + int groupSize = GROUP_FLAGS_SIZE + getGroupCharactersSize(group); + if (group.isTerminal()) groupSize += GROUP_FREQUENCY_SIZE; + if (null != group.mChildren) { + final int offsetBasePoint= groupSize + node.mCachedAddress + size; + final int offset = group.mChildren.mCachedAddress - offsetBasePoint; + groupSize += getByteSize(offset); + } + if (null != group.mShortcutTargets) { + for (WeightedString target : group.mShortcutTargets) { + final int offsetBasePoint = groupSize + node.mCachedAddress + size + + GROUP_FLAGS_SIZE; + final int addressOfTarget = findAddressOfWord(dict, target.mWord); + final int offset = addressOfTarget - offsetBasePoint; + groupSize += getByteSize(offset) + GROUP_FLAGS_SIZE; + } + } + if (null != group.mBigrams) { + for (WeightedString bigram : group.mBigrams) { + final int offsetBasePoint = groupSize + node.mCachedAddress + size + + GROUP_FLAGS_SIZE; + final int addressOfBigram = findAddressOfWord(dict, bigram.mWord); + final int offset = addressOfBigram - offsetBasePoint; + groupSize += getByteSize(offset) + GROUP_FLAGS_SIZE; + } + } + group.mCachedSize = groupSize; + size += groupSize; + } + node.mCachedSize = size; + } + + /** + * Computes the byte size of a list of nodes and updates each node cached position. + * + * @param flatNodes the array of nodes. + * @return the byte size of the entire stack. + */ + private static int stackNodes(ArrayList<Node> flatNodes) { + int nodeOffset = 0; + for (Node n : flatNodes) { + n.mCachedAddress = nodeOffset; + int groupCountSize = getGroupCountSize(n); + int groupOffset = 0; + for (CharGroup g : n.mData) { + g.mCachedAddress = groupCountSize + nodeOffset + groupOffset; + groupOffset += g.mCachedSize; + } + if (groupOffset + groupCountSize != n.mCachedSize) { + throw new RuntimeException("Bug : Stored and computed node size differ"); + } + nodeOffset += n.mCachedSize; + } + return nodeOffset; + } + + /** + * Compute the addresses and sizes of an ordered node array. + * + * This method takes a node array and will update its cached address and size values + * so that they can be written into a file. It determines the smallest size each of the + * nodes can be given the addresses of its children and attributes, and store that into + * each node. + * The order of the node is given by the order of the array. This method makes no effort + * to find a good order; it only mechanically computes the size this order results in. + * + * @param dict the dictionary + * @param flatNodes the ordered array of nodes + * @return the same array it was passed. The nodes have been updated for address and size. + */ + private static ArrayList<Node> computeAddresses(FusionDictionary dict, + ArrayList<Node> flatNodes) { + // First get the worst sizes and offsets + for (Node n : flatNodes) setNodeMaximumSize(n); + final int offset = stackNodes(flatNodes); + + MakedictLog.i("Compressing the array addresses. Original size : " + offset); + MakedictLog.i("(Recursively seen size : " + offset + ")"); + + int passes = 0; + boolean changesDone = false; + do { + changesDone = false; + for (Node n : flatNodes) { + final int oldNodeSize = n.mCachedSize; + computeActualNodeSize(n, dict); + final int newNodeSize = n.mCachedSize; + if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!"); + if (oldNodeSize != newNodeSize) changesDone = true; + } + stackNodes(flatNodes); + ++passes; + } while (changesDone); + + final Node lastNode = flatNodes.get(flatNodes.size() - 1); + MakedictLog.i("Compression complete in " + passes + " passes."); + MakedictLog.i("After address compression : " + + (lastNode.mCachedAddress + lastNode.mCachedSize)); + + return flatNodes; + } + + /** + * Sanity-checking method. + * + * This method checks an array of node for juxtaposition, that is, it will do + * nothing if each node's cached address is actually the previous node's address + * plus the previous node's size. + * If this is not the case, it will throw an exception. + * + * @param array the array node to check + */ + private static void checkFlatNodeArray(ArrayList<Node> array) { + int offset = 0; + int index = 0; + for (Node n : array) { + if (n.mCachedAddress != offset) { + throw new RuntimeException("Wrong address for node " + index + + " : expected " + offset + ", got " + n.mCachedAddress); + } + ++index; + offset += n.mCachedSize; + } + } + + /** + * Helper method to write a variable-size address to a file. + * + * @param buffer the buffer to write to. + * @param index the index in the buffer to write the address to. + * @param address the address to write. + * @return the size in bytes the address actually took. + */ + private static int writeVariableAddress(byte[] buffer, int index, int address) { + switch (getByteSize(address)) { + case 1: + buffer[index++] = (byte)address; + return 1; + case 2: + buffer[index++] = (byte)(0xFF & (address >> 8)); + buffer[index++] = (byte)(0xFF & address); + return 2; + case 3: + buffer[index++] = (byte)(0xFF & (address >> 16)); + buffer[index++] = (byte)(0xFF & (address >> 8)); + buffer[index++] = (byte)(0xFF & address); + return 3; + case 0: + return 0; + default: + throw new RuntimeException("Address " + address + " has a strange size"); + } + } + + private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress, + final int childrenOffset) { + byte flags = 0; + if (group.mChars.length > 1) flags |= FLAG_HAS_MULTIPLE_CHARS; + if (group.mFrequency >= 0) { + flags |= FLAG_IS_TERMINAL; + } + if (null != group.mChildren) { + switch (getByteSize(childrenOffset)) { + case 1: + flags |= FLAG_GROUP_ADDRESS_TYPE_ONEBYTE; + break; + case 2: + flags |= FLAG_GROUP_ADDRESS_TYPE_TWOBYTES; + break; + case 3: + flags |= FLAG_GROUP_ADDRESS_TYPE_THREEBYTES; + break; + default: + throw new RuntimeException("Node with a strange address"); + } + } + if (null != group.mShortcutTargets) { + if (0 == group.mShortcutTargets.size()) { + throw new RuntimeException("0-sized shortcut list must be null"); + } + flags |= FLAG_HAS_SHORTCUT_TARGETS; + } + if (null != group.mBigrams) { + if (0 == group.mBigrams.size()) { + throw new RuntimeException("0-sized bigram list must be null"); + } + flags |= FLAG_HAS_BIGRAMS; + } + if (group.mIsShortcutOnly) { + flags |= FLAG_IS_SHORTCUT_ONLY; + } + return flags; + } + + /** + * Makes the flag value for an attribute. + * + * @param more whether there are more attributes after this one. + * @param offset the offset of the attribute. + * @param frequency the frequency of the attribute, 0..15 + * @return the flags + */ + private static final int makeAttributeFlags(final boolean more, final int offset, + final int frequency) { + int bigramFlags = (more ? FLAG_ATTRIBUTE_HAS_NEXT : 0) + + (offset < 0 ? FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0); + switch (getByteSize(offset)) { + case 1: + bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE; + break; + case 2: + bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES; + break; + case 3: + bigramFlags |= FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES; + break; + default: + throw new RuntimeException("Strange offset size"); + } + bigramFlags += frequency & FLAG_ATTRIBUTE_FREQUENCY; + return bigramFlags; + } + + /** + * Write a node to memory. The node is expected to have its final position cached. + * + * This can be an empty map, but the more is inside the faster the lookups will be. It can + * be carried on as long as nodes do not move. + * + * @param dict the dictionary the node is a part of (for relative offsets). + * @param buffer the memory buffer to write to. + * @param node the node to write. + * @return the address of the END of the node. + */ + private static int writePlacedNode(FusionDictionary dict, byte[] buffer, Node node) { + int index = node.mCachedAddress; + + final int groupCount = node.mData.size(); + final int countSize = getGroupCountSize(node); + if (1 == countSize) { + buffer[index++] = (byte)groupCount; + } else if (2 == countSize) { + // We need to signal 2-byte size by setting the top bit of the MSB to 1, so + // we | 0x80 to do this. + buffer[index++] = (byte)((groupCount >> 8) | 0x80); + buffer[index++] = (byte)(groupCount & 0xFF); + } else { + throw new RuntimeException("Strange size from getGroupCountSize : " + countSize); + } + int groupAddress = index; + for (int i = 0; i < groupCount; ++i) { + CharGroup group = node.mData.get(i); + if (index != group.mCachedAddress) throw new RuntimeException("Bug: write index is not " + + "the same as the cached address of the group"); + groupAddress += GROUP_FLAGS_SIZE + getGroupCharactersSize(group); + // Sanity checks. + if (group.mFrequency > MAX_TERMINAL_FREQUENCY) { + throw new RuntimeException("A node has a frequency > " + MAX_TERMINAL_FREQUENCY + + " : " + group.mFrequency); + } + if (group.mFrequency >= 0) groupAddress += GROUP_FREQUENCY_SIZE; + final int childrenOffset = null == group.mChildren + ? NO_CHILDREN_ADDRESS : group.mChildren.mCachedAddress - groupAddress; + byte flags = makeCharGroupFlags(group, groupAddress, childrenOffset); + buffer[index++] = flags; + index = CharEncoding.writeCharArray(group.mChars, buffer, index); + if (group.hasSeveralChars()) { + buffer[index++] = GROUP_CHARACTERS_TERMINATOR; + } + if (group.mFrequency >= 0) { + buffer[index++] = (byte) group.mFrequency; + } + final int shift = writeVariableAddress(buffer, index, childrenOffset); + index += shift; + groupAddress += shift; + + // Write shortcuts + if (null != group.mShortcutTargets) { + final Iterator shortcutIterator = group.mShortcutTargets.iterator(); + while (shortcutIterator.hasNext()) { + final WeightedString target = (WeightedString)shortcutIterator.next(); + final int addressOfTarget = findAddressOfWord(dict, target.mWord); + ++groupAddress; + final int offset = addressOfTarget - groupAddress; + int shortcutFlags = makeAttributeFlags(shortcutIterator.hasNext(), offset, + target.mFrequency); + buffer[index++] = (byte)shortcutFlags; + final int shortcutShift = writeVariableAddress(buffer, index, Math.abs(offset)); + index += shortcutShift; + groupAddress += shortcutShift; + } + } + // Write bigrams + if (null != group.mBigrams) { + final Iterator bigramIterator = group.mBigrams.iterator(); + while (bigramIterator.hasNext()) { + final WeightedString bigram = (WeightedString)bigramIterator.next(); + final int addressOfBigram = findAddressOfWord(dict, bigram.mWord); + ++groupAddress; + final int offset = addressOfBigram - groupAddress; + int bigramFlags = makeAttributeFlags(bigramIterator.hasNext(), offset, + bigram.mFrequency); + buffer[index++] = (byte)bigramFlags; + final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset)); + index += bigramShift; + groupAddress += bigramShift; + } + } + + } + if (index != node.mCachedAddress + node.mCachedSize) throw new RuntimeException( + "Not the same size : written " + + (index - node.mCachedAddress) + " bytes out of a node that should have " + + node.mCachedSize + " bytes"); + return index; + } + + /** + * Dumps a collection of useful statistics about a node array. + * + * This prints purely informative stuff, like the total estimated file size, the + * number of nodes, of character groups, the repartition of each address size, etc + * + * @param nodes the node array. + */ + private static void showStatistics(ArrayList<Node> nodes) { + int firstTerminalAddress = Integer.MAX_VALUE; + int lastTerminalAddress = Integer.MIN_VALUE; + int size = 0; + int charGroups = 0; + int maxGroups = 0; + int maxRuns = 0; + for (Node n : nodes) { + if (maxGroups < n.mData.size()) maxGroups = n.mData.size(); + for (CharGroup cg : n.mData) { + ++charGroups; + if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length; + if (cg.mFrequency >= 0) { + if (n.mCachedAddress < firstTerminalAddress) + firstTerminalAddress = n.mCachedAddress; + if (n.mCachedAddress > lastTerminalAddress) + lastTerminalAddress = n.mCachedAddress; + } + } + if (n.mCachedAddress + n.mCachedSize > size) size = n.mCachedAddress + n.mCachedSize; + } + final int[] groupCounts = new int[maxGroups + 1]; + final int[] runCounts = new int[maxRuns + 1]; + for (Node n : nodes) { + ++groupCounts[n.mData.size()]; + for (CharGroup cg : n.mData) { + ++runCounts[cg.mChars.length]; + } + } + + MakedictLog.i("Statistics:\n" + + " total file size " + size + "\n" + + " " + nodes.size() + " nodes\n" + + " " + charGroups + " groups (" + ((float)charGroups / nodes.size()) + + " groups per node)\n" + + " first terminal at " + firstTerminalAddress + "\n" + + " last terminal at " + lastTerminalAddress + "\n" + + " Group stats : max = " + maxGroups); + for (int i = 0; i < groupCounts.length; ++i) { + MakedictLog.i(" " + i + " : " + groupCounts[i]); + } + MakedictLog.i(" Character run stats : max = " + maxRuns); + for (int i = 0; i < runCounts.length; ++i) { + MakedictLog.i(" " + i + " : " + runCounts[i]); + } + } + + /** + * Dumps a FusionDictionary to a file. + * + * This is the public entry point to write a dictionary to a file. + * + * @param destination the stream to write the binary data to. + * @param dict the dictionary to write. + * @param version the version of the format to write, currently either 1 or 2. + */ + public static void writeDictionaryBinary(final OutputStream destination, + final FusionDictionary dict, final int version) + throws IOException, UnsupportedFormatException { + + // Addresses are limited to 3 bytes, so we'll just make a 16MB buffer. Since addresses + // can be relative to each node, the structure itself is not limited to 16MB at all, but + // I doubt this will ever be shot. If it is, deciding the order of the nodes becomes + // a quite complicated problem, because though the dictionary itself does not have a + // size limit, each node must still be within 16MB of all its children and parents. + // As long as this is ensured, the dictionary file may grow to any size. + // Anyway, to make a dictionary bigger than 16MB just increase the size of this buffer. + final byte[] buffer = new byte[1 << 24]; + int index = 0; + + if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION) { + throw new UnsupportedFormatException("Requested file format version " + version + + ", but this implementation only supports versions " + + MINIMUM_SUPPORTED_VERSION + " through " + MAXIMUM_SUPPORTED_VERSION); + } + + // The magic number in big-endian order. + if (version >= FIRST_VERSION_WITH_HEADER_SIZE) { + // Magic number for version 2+. + buffer[index++] = (byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 24)); + buffer[index++] = (byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 16)); + buffer[index++] = (byte) (0xFF & (VERSION_2_MAGIC_NUMBER >> 8)); + buffer[index++] = (byte) (0xFF & VERSION_2_MAGIC_NUMBER); + // Dictionary version. + buffer[index++] = (byte) (0xFF & (version >> 8)); + buffer[index++] = (byte) (0xFF & version); + } else { + // Magic number for version 1. + buffer[index++] = (byte) (0xFF & (VERSION_1_MAGIC_NUMBER >> 8)); + buffer[index++] = (byte) (0xFF & VERSION_1_MAGIC_NUMBER); + // Dictionary version. + buffer[index++] = (byte) (0xFF & version); + } + // Options flags + buffer[index++] = (byte) (0xFF & (OPTIONS >> 8)); + buffer[index++] = (byte) (0xFF & OPTIONS); + if (version >= FIRST_VERSION_WITH_HEADER_SIZE) { + final int headerSizeOffset = index; + index += 4; // Size of the header size + // TODO: Write out the header contents here. + // Write out the header size. + buffer[headerSizeOffset] = (byte) (0xFF & (index >> 24)); + buffer[headerSizeOffset + 1] = (byte) (0xFF & (index >> 16)); + buffer[headerSizeOffset + 2] = (byte) (0xFF & (index >> 8)); + buffer[headerSizeOffset + 3] = (byte) (0xFF & (index >> 0)); + } + + destination.write(buffer, 0, index); + index = 0; + + // Leave the choice of the optimal node order to the flattenTree function. + MakedictLog.i("Flattening the tree..."); + ArrayList<Node> flatNodes = flattenTree(dict.mRoot); + + MakedictLog.i("Computing addresses..."); + computeAddresses(dict, flatNodes); + MakedictLog.i("Checking array..."); + checkFlatNodeArray(flatNodes); + + MakedictLog.i("Writing file..."); + int dataEndOffset = 0; + for (Node n : flatNodes) { + dataEndOffset = writePlacedNode(dict, buffer, n); + } + + showStatistics(flatNodes); + + destination.write(buffer, 0, dataEndOffset); + + destination.close(); + MakedictLog.i("Done"); + } + + + // Input methods: Read a binary dictionary to memory. + // readDictionaryBinary is the public entry point for them. + + static final int[] characterBuffer = new int[MAX_WORD_LENGTH]; + private static CharGroupInfo readCharGroup(RandomAccessFile source, + final int originalGroupAddress) throws IOException { + int addressPointer = originalGroupAddress; + final int flags = source.readUnsignedByte(); + ++addressPointer; + final int characters[]; + if (0 != (flags & FLAG_HAS_MULTIPLE_CHARS)) { + int index = 0; + int character = CharEncoding.readChar(source); + addressPointer += CharEncoding.getCharSize(character); + while (-1 != character) { + characterBuffer[index++] = character; + character = CharEncoding.readChar(source); + addressPointer += CharEncoding.getCharSize(character); + } + characters = Arrays.copyOfRange(characterBuffer, 0, index); + } else { + final int character = CharEncoding.readChar(source); + addressPointer += CharEncoding.getCharSize(character); + characters = new int[] { character }; + } + final int frequency; + if (0 != (FLAG_IS_TERMINAL & flags)) { + ++addressPointer; + frequency = source.readUnsignedByte(); + } else { + frequency = CharGroup.NOT_A_TERMINAL; + } + int childrenAddress = addressPointer; + switch (flags & MASK_GROUP_ADDRESS_TYPE) { + case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE: + childrenAddress += source.readUnsignedByte(); + addressPointer += 1; + break; + case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES: + childrenAddress += source.readUnsignedShort(); + addressPointer += 2; + break; + case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES: + childrenAddress += (source.readUnsignedByte() << 16) + source.readUnsignedShort(); + addressPointer += 3; + break; + case FLAG_GROUP_ADDRESS_TYPE_NOADDRESS: + default: + childrenAddress = NO_CHILDREN_ADDRESS; + break; + } + ArrayList<PendingAttribute> shortcutTargets = null; + if (0 != (flags & FLAG_HAS_SHORTCUT_TARGETS)) { + shortcutTargets = new ArrayList<PendingAttribute>(); + while (true) { + final int targetFlags = source.readUnsignedByte(); + ++addressPointer; + final int sign = 0 == (targetFlags & FLAG_ATTRIBUTE_OFFSET_NEGATIVE) ? 1 : -1; + int targetAddress = addressPointer; + switch (targetFlags & MASK_ATTRIBUTE_ADDRESS_TYPE) { + case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE: + targetAddress += sign * source.readUnsignedByte(); + addressPointer += 1; + break; + case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES: + targetAddress += sign * source.readUnsignedShort(); + addressPointer += 2; + break; + case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES: + final int offset = ((source.readUnsignedByte() << 16) + + source.readUnsignedShort()); + targetAddress += sign * offset; + addressPointer += 3; + break; + default: + throw new RuntimeException("Has shortcut targets with no address"); + } + shortcutTargets.add(new PendingAttribute(targetFlags & FLAG_ATTRIBUTE_FREQUENCY, + targetAddress)); + if (0 == (targetFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break; + } + } + ArrayList<PendingAttribute> bigrams = null; + if (0 != (flags & FLAG_HAS_BIGRAMS)) { + bigrams = new ArrayList<PendingAttribute>(); + while (true) { + final int bigramFlags = source.readUnsignedByte(); + ++addressPointer; + final int sign = 0 == (bigramFlags & FLAG_ATTRIBUTE_OFFSET_NEGATIVE) ? 1 : -1; + int bigramAddress = addressPointer; + switch (bigramFlags & MASK_ATTRIBUTE_ADDRESS_TYPE) { + case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE: + bigramAddress += sign * source.readUnsignedByte(); + addressPointer += 1; + break; + case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES: + bigramAddress += sign * source.readUnsignedShort(); + addressPointer += 2; + break; + case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES: + final int offset = ((source.readUnsignedByte() << 16) + + source.readUnsignedShort()); + bigramAddress += sign * offset; + addressPointer += 3; + break; + default: + throw new RuntimeException("Has bigrams with no address"); + } + bigrams.add(new PendingAttribute(bigramFlags & FLAG_ATTRIBUTE_FREQUENCY, + bigramAddress)); + if (0 == (bigramFlags & FLAG_ATTRIBUTE_HAS_NEXT)) break; + } + } + return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency, + childrenAddress, shortcutTargets, bigrams); + } + + /** + * Reads and returns the char group count out of a file and forwards the pointer. + */ + private static int readCharGroupCount(RandomAccessFile source) throws IOException { + final int msb = source.readUnsignedByte(); + if (MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) { + return msb; + } else { + return ((MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8) + + source.readUnsignedByte(); + } + } + + /** + * Finds, as a string, the word at the address passed as an argument. + * + * @param source the file to read from. + * @param headerSize the size of the header. + * @param address the address to seek. + * @return the word, as a string. + * @throws IOException if the file can't be read. + */ + private static String getWordAtAddress(RandomAccessFile source, long headerSize, + int address) throws IOException { + final long originalPointer = source.getFilePointer(); + source.seek(headerSize); + final int count = readCharGroupCount(source); + int groupOffset = getGroupCountSize(count); + final StringBuilder builder = new StringBuilder(); + String result = null; + + CharGroupInfo last = null; + for (int i = count - 1; i >= 0; --i) { + CharGroupInfo info = readCharGroup(source, groupOffset); + groupOffset = info.mEndAddress; + if (info.mOriginalAddress == address) { + builder.append(new String(info.mCharacters, 0, info.mCharacters.length)); + result = builder.toString(); + break; // and return + } + if (hasChildrenAddress(info.mChildrenAddress)) { + if (info.mChildrenAddress > address) { + if (null == last) continue; + builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); + source.seek(last.mChildrenAddress + headerSize); + groupOffset = last.mChildrenAddress + 1; + i = source.readUnsignedByte(); + last = null; + continue; + } + last = info; + } + if (0 == i && hasChildrenAddress(last.mChildrenAddress)) { + builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); + source.seek(last.mChildrenAddress + headerSize); + groupOffset = last.mChildrenAddress + 1; + i = source.readUnsignedByte(); + last = null; + continue; + } + } + source.seek(originalPointer); + return result; + } + + /** + * Reads a single node from a binary file. + * + * This methods reads the file at the current position of its file pointer. A node is + * fully expected to start at the current position. + * This will recursively read other nodes into the structure, populating the reverse + * maps on the fly and using them to keep track of already read nodes. + * + * @param source the data file, correctly positioned at the start of a node. + * @param headerSize the size, in bytes, of the file header. + * @param reverseNodeMap a mapping from addresses to already read nodes. + * @param reverseGroupMap a mapping from addresses to already read character groups. + * @return the read node with all his children already read. + */ + private static Node readNode(RandomAccessFile source, long headerSize, + Map<Integer, Node> reverseNodeMap, Map<Integer, CharGroup> reverseGroupMap) + throws IOException { + final int nodeOrigin = (int)(source.getFilePointer() - headerSize); + final int count = readCharGroupCount(source); + final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>(); + int groupOffset = nodeOrigin + getGroupCountSize(count); + for (int i = count; i > 0; --i) { + CharGroupInfo info = readCharGroup(source, groupOffset); + ArrayList<WeightedString> shortcutTargets = null; + if (null != info.mShortcutTargets) { + shortcutTargets = new ArrayList<WeightedString>(); + for (PendingAttribute target : info.mShortcutTargets) { + final String word = getWordAtAddress(source, headerSize, target.mAddress); + shortcutTargets.add(new WeightedString(word, target.mFrequency)); + } + } + ArrayList<WeightedString> bigrams = null; + if (null != info.mBigrams) { + bigrams = new ArrayList<WeightedString>(); + for (PendingAttribute bigram : info.mBigrams) { + final String word = getWordAtAddress(source, headerSize, bigram.mAddress); + bigrams.add(new WeightedString(word, bigram.mFrequency)); + } + } + if (hasChildrenAddress(info.mChildrenAddress)) { + Node children = reverseNodeMap.get(info.mChildrenAddress); + if (null == children) { + final long currentPosition = source.getFilePointer(); + source.seek(info.mChildrenAddress + headerSize); + children = readNode(source, headerSize, reverseNodeMap, reverseGroupMap); + source.seek(currentPosition); + } + nodeContents.add( + new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency, + children, isShortcutOnly(info))); + } else { + nodeContents.add( + new CharGroup(info.mCharacters, shortcutTargets, bigrams, info.mFrequency, + isShortcutOnly(info))); + } + groupOffset = info.mEndAddress; + } + final Node node = new Node(nodeContents); + node.mCachedAddress = nodeOrigin; + reverseNodeMap.put(node.mCachedAddress, node); + return node; + } + + /** + * Helper function to get the binary format version from the header. + */ + private static int getFormatVersion(final RandomAccessFile source) throws IOException { + final int magic_v1 = source.readUnsignedShort(); + if (VERSION_1_MAGIC_NUMBER == magic_v1) return source.readUnsignedByte(); + final int magic_v2 = (magic_v1 << 16) + source.readUnsignedShort(); + if (VERSION_2_MAGIC_NUMBER == magic_v2) return source.readUnsignedShort(); + return NOT_A_VERSION_NUMBER; + } + + /** + * Reads a random access file and returns the memory representation of the dictionary. + * + * This high-level method takes a binary file and reads its contents, populating a + * FusionDictionary structure. The optional dict argument is an existing dictionary to + * which words from the file should be added. If it is null, a new dictionary is created. + * + * @param source the file to read. + * @param dict an optional dictionary to add words to, or null. + * @return the created (or merged) dictionary. + */ + public static FusionDictionary readDictionaryBinary(final RandomAccessFile source, + final FusionDictionary dict) throws IOException, UnsupportedFormatException { + // Check file version + final int version = getFormatVersion(source); + if (version < MINIMUM_SUPPORTED_VERSION || version > MAXIMUM_SUPPORTED_VERSION ) { + throw new UnsupportedFormatException("This file has version " + version + + ", but this implementation does not support versions above " + + MAXIMUM_SUPPORTED_VERSION); + } + + // Read options + source.readUnsignedShort(); + + final long headerSize; + if (version < FIRST_VERSION_WITH_HEADER_SIZE) { + headerSize = source.getFilePointer(); + } else { + headerSize = (source.readUnsignedByte() << 24) + (source.readUnsignedByte() << 16) + + (source.readUnsignedByte() << 8) + source.readUnsignedByte(); + // read the header body + source.seek(headerSize); + } + + Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>(); + Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>(); + final Node root = readNode(source, headerSize, reverseNodeMapping, reverseGroupMapping); + + FusionDictionary newDict = new FusionDictionary(root, + new FusionDictionary.DictionaryOptions()); + if (null != dict) { + for (Word w : dict) { + newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets, w.mBigrams); + } + } + + return newDict; + } + + /** + * Basic test to find out whether the file is a binary dictionary or not. + * + * Concretely this only tests the magic number. + * + * @param filename The name of the file to test. + * @return true if it's a binary dictionary, false otherwise + */ + public static boolean isBinaryDictionary(final String filename) { + try { + RandomAccessFile f = new RandomAccessFile(filename, "r"); + final int version = getFormatVersion(f); + return (version >= MINIMUM_SUPPORTED_VERSION && version <= MAXIMUM_SUPPORTED_VERSION); + } catch (FileNotFoundException e) { + return false; + } catch (IOException e) { + return false; + } + } +} |