diff options
author | 2013-08-15 06:53:22 +0000 | |
---|---|---|
committer | 2013-08-15 06:53:23 +0000 | |
commit | f74ddfbb06dbdd74fefee49bd63f2c1b9f61ad13 (patch) | |
tree | 6f2f5dbed96625a3267f55d4492d9f57b78a814e /java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java | |
parent | a38a15ddc0aa314578828de29bba51cfcf39c8de (diff) | |
parent | 4c63d0614e7ed7aea4bcbab3a17090d841661d92 (diff) | |
download | latinime-f74ddfbb06dbdd74fefee49bd63f2c1b9f61ad13.tar.gz latinime-f74ddfbb06dbdd74fefee49bd63f2c1b9f61ad13.tar.xz latinime-f74ddfbb06dbdd74fefee49bd63f2c1b9f61ad13.zip |
Merge "[Refactor] Divide BinaryDictInputOutput into BinaryDictInputUtils and BinaryDictOutputUtils."
Diffstat (limited to 'java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java')
-rw-r--r-- | java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java | 1775 |
1 files changed, 0 insertions, 1775 deletions
diff --git a/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java b/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java deleted file mode 100644 index a54661058..000000000 --- a/java/src/com/android/inputmethod/latin/makedict/BinaryDictInputOutput.java +++ /dev/null @@ -1,1775 +0,0 @@ -/* - * Copyright (C) 2011 The Android Open Source Project - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package com.android.inputmethod.latin.makedict; - -import com.android.inputmethod.annotations.UsedForTesting; -import com.android.inputmethod.latin.makedict.FormatSpec.FileHeader; -import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions; -import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup; -import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions; -import com.android.inputmethod.latin.makedict.FusionDictionary.Node; -import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString; - -import java.io.ByteArrayOutputStream; -import java.io.File; -import java.io.FileInputStream; -import java.io.FileNotFoundException; -import java.io.IOException; -import java.io.OutputStream; -import java.nio.ByteBuffer; -import java.nio.channels.FileChannel; -import java.util.ArrayList; -import java.util.Arrays; -import java.util.HashMap; -import java.util.Iterator; -import java.util.Map; -import java.util.TreeMap; - -/** - * Reads and writes XML files for a FusionDictionary. - * - * All the methods in this class are static. - */ -public final class BinaryDictInputOutput { - - private static final boolean DBG = MakedictLog.DBG; - - // Arbitrary limit to how much passes we consider address size compression should - // terminate in. At the time of this writing, our largest dictionary completes - // compression in five passes. - // If the number of passes exceeds this number, makedict bails with an exception on - // suspicion that a bug might be causing an infinite loop. - private static final int MAX_PASSES = 24; - private static final int MAX_JUMPS = 12; - - @UsedForTesting - public interface FusionDictionaryBufferInterface { - public int readUnsignedByte(); - public int readUnsignedShort(); - public int readUnsignedInt24(); - public int readInt(); - public int position(); - public void position(int newPosition); - public void put(final byte b); - public int limit(); - @UsedForTesting - public int capacity(); - } - - public static final class ByteBufferWrapper implements FusionDictionaryBufferInterface { - private ByteBuffer mBuffer; - - public ByteBufferWrapper(final ByteBuffer buffer) { - mBuffer = buffer; - } - - @Override - public int readUnsignedByte() { - return mBuffer.get() & 0xFF; - } - - @Override - public int readUnsignedShort() { - return mBuffer.getShort() & 0xFFFF; - } - - @Override - public int readUnsignedInt24() { - final int retval = readUnsignedByte(); - return (retval << 16) + readUnsignedShort(); - } - - @Override - public int readInt() { - return mBuffer.getInt(); - } - - @Override - public int position() { - return mBuffer.position(); - } - - @Override - public void position(int newPos) { - mBuffer.position(newPos); - } - - @Override - public void put(final byte b) { - mBuffer.put(b); - } - - @Override - public int limit() { - return mBuffer.limit(); - } - - @Override - public int capacity() { - return mBuffer.capacity(); - } - } - - /** - * A class grouping utility function for our specific character encoding. - */ - static final class CharEncoding { - private static final int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20; - private static final int MAXIMAL_ONE_BYTE_CHARACTER_VALUE = 0xFF; - - /** - * Helper method to find out whether this code fits on one byte - */ - private static boolean fitsOnOneByte(final int character) { - return character >= MINIMAL_ONE_BYTE_CHARACTER_VALUE - && character <= MAXIMAL_ONE_BYTE_CHARACTER_VALUE; - } - - /** - * Compute the size of a character given its character code. - * - * Char format is: - * 1 byte = bbbbbbbb match - * case 000xxxxx: xxxxx << 16 + next byte << 8 + next byte - * else: if 00011111 (= 0x1F) : this is the terminator. This is a relevant choice because - * unicode code points range from 0 to 0x10FFFF, so any 3-byte value starting with - * 00011111 would be outside unicode. - * else: iso-latin-1 code - * This allows for the whole unicode range to be encoded, including chars outside of - * the BMP. Also everything in the iso-latin-1 charset is only 1 byte, except control - * characters which should never happen anyway (and still work, but take 3 bytes). - * - * @param character the character code. - * @return the size in binary encoded-form, either 1 or 3 bytes. - */ - static int getCharSize(final int character) { - // See char encoding in FusionDictionary.java - if (fitsOnOneByte(character)) return 1; - if (FormatSpec.INVALID_CHARACTER == character) return 1; - return 3; - } - - /** - * Compute the byte size of a character array. - */ - private static int getCharArraySize(final int[] chars) { - int size = 0; - for (int character : chars) size += getCharSize(character); - return size; - } - - /** - * Writes a char array to a byte buffer. - * - * @param codePoints the code point array to write. - * @param buffer the byte buffer to write to. - * @param index the index in buffer to write the character array to. - * @return the index after the last character. - */ - private static int writeCharArray(final int[] codePoints, final byte[] buffer, int index) { - for (int codePoint : codePoints) { - if (1 == getCharSize(codePoint)) { - buffer[index++] = (byte)codePoint; - } else { - buffer[index++] = (byte)(0xFF & (codePoint >> 16)); - buffer[index++] = (byte)(0xFF & (codePoint >> 8)); - buffer[index++] = (byte)(0xFF & codePoint); - } - } - return index; - } - - /** - * Writes a string with our character format to a byte buffer. - * - * This will also write the terminator byte. - * - * @param buffer the byte buffer to write to. - * @param origin the offset to write from. - * @param word the string to write. - * @return the size written, in bytes. - */ - private static int writeString(final byte[] buffer, final int origin, - final String word) { - final int length = word.length(); - int index = origin; - for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { - final int codePoint = word.codePointAt(i); - if (1 == getCharSize(codePoint)) { - buffer[index++] = (byte)codePoint; - } else { - buffer[index++] = (byte)(0xFF & (codePoint >> 16)); - buffer[index++] = (byte)(0xFF & (codePoint >> 8)); - buffer[index++] = (byte)(0xFF & codePoint); - } - } - buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR; - return index - origin; - } - - /** - * Writes a string with our character format to a ByteArrayOutputStream. - * - * This will also write the terminator byte. - * - * @param buffer the ByteArrayOutputStream to write to. - * @param word the string to write. - */ - private static void writeString(final ByteArrayOutputStream buffer, final String word) { - final int length = word.length(); - for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { - final int codePoint = word.codePointAt(i); - if (1 == getCharSize(codePoint)) { - buffer.write((byte) codePoint); - } else { - buffer.write((byte) (0xFF & (codePoint >> 16))); - buffer.write((byte) (0xFF & (codePoint >> 8))); - buffer.write((byte) (0xFF & codePoint)); - } - } - buffer.write(FormatSpec.GROUP_CHARACTERS_TERMINATOR); - } - - /** - * Reads a string from a buffer. This is the converse of the above method. - */ - private static String readString(final FusionDictionaryBufferInterface buffer) { - final StringBuilder s = new StringBuilder(); - int character = readChar(buffer); - while (character != FormatSpec.INVALID_CHARACTER) { - s.appendCodePoint(character); - character = readChar(buffer); - } - return s.toString(); - } - - /** - * Reads a character from the buffer. - * - * This follows the character format documented earlier in this source file. - * - * @param buffer the buffer, positioned over an encoded character. - * @return the character code. - */ - static int readChar(final FusionDictionaryBufferInterface buffer) { - int character = buffer.readUnsignedByte(); - if (!fitsOnOneByte(character)) { - if (FormatSpec.GROUP_CHARACTERS_TERMINATOR == character) { - return FormatSpec.INVALID_CHARACTER; - } - character <<= 16; - character += buffer.readUnsignedShort(); - } - return character; - } - } - - /** - * Compute the binary size of the character array. - * - * If only one character, this is the size of this character. If many, it's the sum of their - * sizes + 1 byte for the terminator. - * - * @param characters the character array - * @return the size of the char array, including the terminator if any - */ - static int getGroupCharactersSize(final int[] characters) { - int size = CharEncoding.getCharArraySize(characters); - if (characters.length > 1) size += FormatSpec.GROUP_TERMINATOR_SIZE; - return size; - } - - /** - * Compute the binary size of the character array in a group - * - * If only one character, this is the size of this character. If many, it's the sum of their - * sizes + 1 byte for the terminator. - * - * @param group the group - * @return the size of the char array, including the terminator if any - */ - private static int getGroupCharactersSize(final CharGroup group) { - return getGroupCharactersSize(group.mChars); - } - - /** - * Compute the binary size of the group count for a node - * @param node the node - * @return the size of the group count, either 1 or 2 bytes. - */ - private static int getGroupCountSize(final Node node) { - return BinaryDictIOUtils.getGroupCountSize(node.mData.size()); - } - - /** - * Compute the size of a shortcut in bytes. - */ - private static int getShortcutSize(final WeightedString shortcut) { - int size = FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE; - final String word = shortcut.mWord; - final int length = word.length(); - for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) { - final int codePoint = word.codePointAt(i); - size += CharEncoding.getCharSize(codePoint); - } - size += FormatSpec.GROUP_TERMINATOR_SIZE; - return size; - } - - /** - * Compute the size of a shortcut list in bytes. - * - * This is known in advance and does not change according to position in the file - * like address lists do. - */ - static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) { - if (null == shortcutList) return 0; - int size = FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE; - for (final WeightedString shortcut : shortcutList) { - size += getShortcutSize(shortcut); - } - return size; - } - - /** - * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything. - * - * @param group the CharGroup to compute the size of. - * @param options file format options. - * @return the maximum size of the group. - */ - private static int getCharGroupMaximumSize(final CharGroup group, final FormatOptions options) { - int size = getGroupHeaderSize(group, options); - // If terminal, one byte for the frequency - if (group.isTerminal()) size += FormatSpec.GROUP_FREQUENCY_SIZE; - size += FormatSpec.GROUP_MAX_ADDRESS_SIZE; // For children address - size += getShortcutListSize(group.mShortcutTargets); - if (null != group.mBigrams) { - size += (FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE - + FormatSpec.GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE) - * group.mBigrams.size(); - } - return size; - } - - /** - * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches - * it in the 'actualSize' member of the node. - * - * @param node the node to compute the maximum size of. - * @param options file format options. - */ - private static void calculateNodeMaximumSize(final Node node, final FormatOptions options) { - int size = getGroupCountSize(node); - for (CharGroup g : node.mData) { - final int groupSize = getCharGroupMaximumSize(g, options); - g.mCachedSize = groupSize; - size += groupSize; - } - if (options.mSupportsDynamicUpdate) { - size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE; - } - node.mCachedSize = size; - } - - /** - * Compute the size of the header (flag + [parent address] + characters size) of a CharGroup. - * - * @param group the group of which to compute the size of the header - * @param options file format options. - */ - private static int getGroupHeaderSize(final CharGroup group, final FormatOptions options) { - if (BinaryDictIOUtils.supportsDynamicUpdate(options)) { - return FormatSpec.GROUP_FLAGS_SIZE + FormatSpec.PARENT_ADDRESS_SIZE - + getGroupCharactersSize(group); - } else { - return FormatSpec.GROUP_FLAGS_SIZE + getGroupCharactersSize(group); - } - } - - /** - * Compute the size, in bytes, that an address will occupy. - * - * This can be used either for children addresses (which are always positive) or for - * attribute, which may be positive or negative but - * store their sign bit separately. - * - * @param address the address - * @return the byte size. - */ - static int getByteSize(final int address) { - assert(address <= FormatSpec.UINT24_MAX); - if (!BinaryDictIOUtils.hasChildrenAddress(address)) { - return 0; - } else if (Math.abs(address) <= FormatSpec.UINT8_MAX) { - return 1; - } else if (Math.abs(address) <= FormatSpec.UINT16_MAX) { - return 2; - } else { - return 3; - } - } - - // End utility methods. - - // This method is responsible for finding a nice ordering of the nodes that favors run-time - // cache performance and dictionary size. - /* package for tests */ static ArrayList<Node> flattenTree(final Node root) { - final int treeSize = FusionDictionary.countCharGroups(root); - MakedictLog.i("Counted nodes : " + treeSize); - final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize); - return flattenTreeInner(flatTree, root); - } - - private static ArrayList<Node> flattenTreeInner(final ArrayList<Node> list, final Node node) { - // Removing the node is necessary if the tails are merged, because we would then - // add the same node several times when we only want it once. A number of places in - // the code also depends on any node being only once in the list. - // Merging tails can only be done if there are no attributes. Searching for attributes - // in LatinIME code depends on a total breadth-first ordering, which merging tails - // breaks. If there are no attributes, it should be fine (and reduce the file size) - // to merge tails, and removing the node from the list would be necessary. However, - // we don't merge tails because breaking the breadth-first ordering would result in - // extreme overhead at bigram lookup time (it would make the search function O(n) instead - // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty - // high). - // If no nodes are ever merged, we can't have the same node twice in the list, hence - // searching for duplicates in unnecessary. It is also very performance consuming, - // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making - // this simple list.remove operation O(n*n) overall. On Android this overhead is very - // high. - // For future reference, the code to remove duplicate is a simple : list.remove(node); - list.add(node); - final ArrayList<CharGroup> branches = node.mData; - final int nodeSize = branches.size(); - for (CharGroup group : branches) { - if (null != group.mChildren) flattenTreeInner(list, group.mChildren); - } - return list; - } - - /** - * Get the offset from a position inside a current node to a target node, during update. - * - * If the current node is before the target node, the target node has not been updated yet, - * so we should return the offset from the old position of the current node to the old position - * of the target node. If on the other hand the target is before the current node, it already - * has been updated, so we should return the offset from the new position in the current node - * to the new position in the target node. - * @param currentNode the node containing the CharGroup where the offset will be written - * @param offsetFromStartOfCurrentNode the offset, in bytes, from the start of currentNode - * @param targetNode the target node to get the offset to - * @return the offset to the target node - */ - private static int getOffsetToTargetNodeDuringUpdate(final Node currentNode, - final int offsetFromStartOfCurrentNode, final Node targetNode) { - final boolean isTargetBeforeCurrent = (targetNode.mCachedAddressBeforeUpdate - < currentNode.mCachedAddressBeforeUpdate); - if (isTargetBeforeCurrent) { - return targetNode.mCachedAddressAfterUpdate - - (currentNode.mCachedAddressAfterUpdate + offsetFromStartOfCurrentNode); - } else { - return targetNode.mCachedAddressBeforeUpdate - - (currentNode.mCachedAddressBeforeUpdate + offsetFromStartOfCurrentNode); - } - } - - /** - * Get the offset from a position inside a current node to a target CharGroup, during update. - * @param currentNode the node containing the CharGroup where the offset will be written - * @param offsetFromStartOfCurrentNode the offset, in bytes, from the start of currentNode - * @param targetCharGroup the target CharGroup to get the offset to - * @return the offset to the target CharGroup - */ - // TODO: is there any way to factorize this method with the one above? - private static int getOffsetToTargetCharGroupDuringUpdate(final Node currentNode, - final int offsetFromStartOfCurrentNode, final CharGroup targetCharGroup) { - final int oldOffsetBasePoint = currentNode.mCachedAddressBeforeUpdate - + offsetFromStartOfCurrentNode; - final boolean isTargetBeforeCurrent = (targetCharGroup.mCachedAddressBeforeUpdate - < oldOffsetBasePoint); - // If the target is before the current node, then its address has already been updated. - // We can use the AfterUpdate member, and compare it to our own member after update. - // Otherwise, the AfterUpdate member is not updated yet, so we need to use the BeforeUpdate - // member, and of course we have to compare this to our own address before update. - if (isTargetBeforeCurrent) { - final int newOffsetBasePoint = currentNode.mCachedAddressAfterUpdate - + offsetFromStartOfCurrentNode; - return targetCharGroup.mCachedAddressAfterUpdate - newOffsetBasePoint; - } else { - return targetCharGroup.mCachedAddressBeforeUpdate - oldOffsetBasePoint; - } - } - - /** - * Computes the actual node size, based on the cached addresses of the children nodes. - * - * Each node stores its tentative address. During dictionary address computing, these - * are not final, but they can be used to compute the node size (the node size depends - * on the address of the children because the number of bytes necessary to store an - * address depends on its numeric value. The return value indicates whether the node - * contents (as in, any of the addresses stored in the cache fields) have changed with - * respect to their previous value. - * - * @param node the node to compute the size of. - * @param dict the dictionary in which the word/attributes are to be found. - * @param formatOptions file format options. - * @return false if none of the cached addresses inside the node changed, true otherwise. - */ - private static boolean computeActualNodeSize(final Node node, final FusionDictionary dict, - final FormatOptions formatOptions) { - boolean changed = false; - int size = getGroupCountSize(node); - for (CharGroup group : node.mData) { - group.mCachedAddressAfterUpdate = node.mCachedAddressAfterUpdate + size; - if (group.mCachedAddressAfterUpdate != group.mCachedAddressBeforeUpdate) { - changed = true; - } - int groupSize = getGroupHeaderSize(group, formatOptions); - if (group.isTerminal()) groupSize += FormatSpec.GROUP_FREQUENCY_SIZE; - if (null == group.mChildren && formatOptions.mSupportsDynamicUpdate) { - groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE; - } else if (null != group.mChildren) { - if (formatOptions.mSupportsDynamicUpdate) { - groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE; - } else { - groupSize += getByteSize(getOffsetToTargetNodeDuringUpdate(node, - groupSize + size, group.mChildren)); - } - } - groupSize += getShortcutListSize(group.mShortcutTargets); - if (null != group.mBigrams) { - for (WeightedString bigram : group.mBigrams) { - final int offset = getOffsetToTargetCharGroupDuringUpdate(node, - groupSize + size + FormatSpec.GROUP_FLAGS_SIZE, - FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord)); - groupSize += getByteSize(offset) + FormatSpec.GROUP_FLAGS_SIZE; - } - } - group.mCachedSize = groupSize; - size += groupSize; - } - if (formatOptions.mSupportsDynamicUpdate) { - size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE; - } - if (node.mCachedSize != size) { - node.mCachedSize = size; - changed = true; - } - return changed; - } - - /** - * Initializes the cached addresses of nodes from their size. - * - * @param flatNodes the array of nodes. - * @param formatOptions file format options. - * @return the byte size of the entire stack. - */ - private static int initializeNodesCachedAddresses(final ArrayList<Node> flatNodes, - final FormatOptions formatOptions) { - int nodeOffset = 0; - for (final Node n : flatNodes) { - n.mCachedAddressBeforeUpdate = nodeOffset; - int groupCountSize = getGroupCountSize(n); - int groupOffset = 0; - for (final CharGroup g : n.mData) { - g.mCachedAddressBeforeUpdate = g.mCachedAddressAfterUpdate = - groupCountSize + nodeOffset + groupOffset; - groupOffset += g.mCachedSize; - } - final int nodeSize = groupCountSize + groupOffset - + (formatOptions.mSupportsDynamicUpdate - ? FormatSpec.FORWARD_LINK_ADDRESS_SIZE : 0); - nodeOffset += n.mCachedSize; - } - return nodeOffset; - } - - /** - * Updates the cached addresses of nodes after recomputing their new positions. - * - * @param flatNodes the array of nodes. - */ - private static void updateNodeCachedAddresses(final ArrayList<Node> flatNodes) { - for (final Node n : flatNodes) { - n.mCachedAddressBeforeUpdate = n.mCachedAddressAfterUpdate; - for (final CharGroup g : n.mData) { - g.mCachedAddressBeforeUpdate = g.mCachedAddressAfterUpdate; - } - } - } - - /** - * Compute the cached parent addresses after all has been updated. - * - * The parent addresses are used by some binary formats at write-to-disk time. Not all formats - * need them. In particular, version 2 does not need them, and version 3 does. - * - * @param flatNodes the flat array of nodes to fill in - */ - private static void computeParentAddresses(final ArrayList<Node> flatNodes) { - for (final Node node : flatNodes) { - for (final CharGroup group : node.mData) { - if (null != group.mChildren) { - // Assign my address to children's parent address - // Here BeforeUpdate and AfterUpdate addresses have the same value, so it - // does not matter which we use. - group.mChildren.mCachedParentAddress = group.mCachedAddressAfterUpdate - - group.mChildren.mCachedAddressAfterUpdate; - } - } - } - } - - /** - * Compute the addresses and sizes of an ordered node array. - * - * This method takes a node array and will update its cached address and size values - * so that they can be written into a file. It determines the smallest size each of the - * nodes can be given the addresses of its children and attributes, and store that into - * each node. - * The order of the node is given by the order of the array. This method makes no effort - * to find a good order; it only mechanically computes the size this order results in. - * - * @param dict the dictionary - * @param flatNodes the ordered array of nodes - * @param formatOptions file format options. - * @return the same array it was passed. The nodes have been updated for address and size. - */ - private static ArrayList<Node> computeAddresses(final FusionDictionary dict, - final ArrayList<Node> flatNodes, final FormatOptions formatOptions) { - // First get the worst possible sizes and offsets - for (final Node n : flatNodes) calculateNodeMaximumSize(n, formatOptions); - final int offset = initializeNodesCachedAddresses(flatNodes, formatOptions); - - MakedictLog.i("Compressing the array addresses. Original size : " + offset); - MakedictLog.i("(Recursively seen size : " + offset + ")"); - - int passes = 0; - boolean changesDone = false; - do { - changesDone = false; - int nodeStartOffset = 0; - for (final Node n : flatNodes) { - n.mCachedAddressAfterUpdate = nodeStartOffset; - final int oldNodeSize = n.mCachedSize; - final boolean changed = computeActualNodeSize(n, dict, formatOptions); - final int newNodeSize = n.mCachedSize; - if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!"); - nodeStartOffset += newNodeSize; - changesDone |= changed; - } - updateNodeCachedAddresses(flatNodes); - ++passes; - if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug"); - } while (changesDone); - - if (formatOptions.mSupportsDynamicUpdate) { - computeParentAddresses(flatNodes); - } - final Node lastNode = flatNodes.get(flatNodes.size() - 1); - MakedictLog.i("Compression complete in " + passes + " passes."); - MakedictLog.i("After address compression : " - + (lastNode.mCachedAddressAfterUpdate + lastNode.mCachedSize)); - - return flatNodes; - } - - /** - * Sanity-checking method. - * - * This method checks an array of node for juxtaposition, that is, it will do - * nothing if each node's cached address is actually the previous node's address - * plus the previous node's size. - * If this is not the case, it will throw an exception. - * - * @param array the array node to check - */ - private static void checkFlatNodeArray(final ArrayList<Node> array) { - int offset = 0; - int index = 0; - for (final Node n : array) { - // BeforeUpdate and AfterUpdate addresses are the same here, so it does not matter - // which we use. - if (n.mCachedAddressAfterUpdate != offset) { - throw new RuntimeException("Wrong address for node " + index - + " : expected " + offset + ", got " + n.mCachedAddressAfterUpdate); - } - ++index; - offset += n.mCachedSize; - } - } - - /** - * Helper method to write a variable-size address to a file. - * - * @param buffer the buffer to write to. - * @param index the index in the buffer to write the address to. - * @param address the address to write. - * @return the size in bytes the address actually took. - */ - private static int writeVariableAddress(final byte[] buffer, int index, final int address) { - switch (getByteSize(address)) { - case 1: - buffer[index++] = (byte)address; - return 1; - case 2: - buffer[index++] = (byte)(0xFF & (address >> 8)); - buffer[index++] = (byte)(0xFF & address); - return 2; - case 3: - buffer[index++] = (byte)(0xFF & (address >> 16)); - buffer[index++] = (byte)(0xFF & (address >> 8)); - buffer[index++] = (byte)(0xFF & address); - return 3; - case 0: - return 0; - default: - throw new RuntimeException("Address " + address + " has a strange size"); - } - } - - /** - * Helper method to write a variable-size signed address to a file. - * - * @param buffer the buffer to write to. - * @param index the index in the buffer to write the address to. - * @param address the address to write. - * @return the size in bytes the address actually took. - */ - private static int writeVariableSignedAddress(final byte[] buffer, int index, - final int address) { - if (!BinaryDictIOUtils.hasChildrenAddress(address)) { - buffer[index] = buffer[index + 1] = buffer[index + 2] = 0; - } else { - final int absAddress = Math.abs(address); - buffer[index++] = - (byte)((address < 0 ? FormatSpec.MSB8 : 0) | (0xFF & (absAddress >> 16))); - buffer[index++] = (byte)(0xFF & (absAddress >> 8)); - buffer[index++] = (byte)(0xFF & absAddress); - } - return 3; - } - - /** - * Makes the flag value for a char group. - * - * @param hasMultipleChars whether the group has multiple chars. - * @param isTerminal whether the group is terminal. - * @param childrenAddressSize the size of a children address. - * @param hasShortcuts whether the group has shortcuts. - * @param hasBigrams whether the group has bigrams. - * @param isNotAWord whether the group is not a word. - * @param isBlackListEntry whether the group is a blacklist entry. - * @param formatOptions file format options. - * @return the flags - */ - static int makeCharGroupFlags(final boolean hasMultipleChars, final boolean isTerminal, - final int childrenAddressSize, final boolean hasShortcuts, final boolean hasBigrams, - final boolean isNotAWord, final boolean isBlackListEntry, - final FormatOptions formatOptions) { - byte flags = 0; - if (hasMultipleChars) flags |= FormatSpec.FLAG_HAS_MULTIPLE_CHARS; - if (isTerminal) flags |= FormatSpec.FLAG_IS_TERMINAL; - if (formatOptions.mSupportsDynamicUpdate) { - flags |= FormatSpec.FLAG_IS_NOT_MOVED; - } else if (true) { - switch (childrenAddressSize) { - case 1: - flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE; - break; - case 2: - flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES; - break; - case 3: - flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES; - break; - case 0: - flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS; - break; - default: - throw new RuntimeException("Node with a strange address"); - } - } - if (hasShortcuts) flags |= FormatSpec.FLAG_HAS_SHORTCUT_TARGETS; - if (hasBigrams) flags |= FormatSpec.FLAG_HAS_BIGRAMS; - if (isNotAWord) flags |= FormatSpec.FLAG_IS_NOT_A_WORD; - if (isBlackListEntry) flags |= FormatSpec.FLAG_IS_BLACKLISTED; - return flags; - } - - private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress, - final int childrenOffset, final FormatOptions formatOptions) { - return (byte) makeCharGroupFlags(group.mChars.length > 1, group.mFrequency >= 0, - getByteSize(childrenOffset), group.mShortcutTargets != null, group.mBigrams != null, - group.mIsNotAWord, group.mIsBlacklistEntry, formatOptions); - } - - /** - * Makes the flag value for a bigram. - * - * @param more whether there are more bigrams after this one. - * @param offset the offset of the bigram. - * @param bigramFrequency the frequency of the bigram, 0..255. - * @param unigramFrequency the unigram frequency of the same word, 0..255. - * @param word the second bigram, for debugging purposes - * @return the flags - */ - private static final int makeBigramFlags(final boolean more, final int offset, - int bigramFrequency, final int unigramFrequency, final String word) { - int bigramFlags = (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0) - + (offset < 0 ? FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0); - switch (getByteSize(offset)) { - case 1: - bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE; - break; - case 2: - bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES; - break; - case 3: - bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES; - break; - default: - throw new RuntimeException("Strange offset size"); - } - if (unigramFrequency > bigramFrequency) { - MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word - + "\". Bigram freq is " + bigramFrequency + ", unigram freq for " - + word + " is " + unigramFrequency); - bigramFrequency = unigramFrequency; - } - // We compute the difference between 255 (which means probability = 1) and the - // unigram score. We split this into a number of discrete steps. - // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15 - // represents an increase of 16 steps: a value of 15 will be interpreted as the median - // value of the 16th step. In all justice, if the bigram frequency is low enough to be - // rounded below the first step (which means it is less than half a step higher than the - // unigram frequency) then the unigram frequency itself is the best approximation of the - // bigram freq that we could possibly supply, hence we should *not* include this bigram - // in the file at all. - // until this is done, we'll write 0 and slightly overestimate this case. - // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step - // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to - // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the - // step size. Then we compute the start of the first step (the one where value 0 starts) - // by adding half-a-step to the unigramFrequency. From there, we compute the integer - // number of steps to the bigramFrequency. One last thing: we want our steps to include - // their lower bound and exclude their higher bound so we need to have the first step - // start at exactly 1 unit higher than floor(unigramFreq + half a step). - // Note : to reconstruct the score, the dictionary reader will need to divide - // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step, - // and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best - // approximation. (0.5 to get the first step start, and 0.5 to get the middle of the - // step pointed by the discretized frequency. - final float stepSize = - (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency) - / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY); - final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f); - final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize); - // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1 - // here. The best approximation would be the unigram freq itself, so we should not - // include this bigram in the dictionary. For now, register as 0, and live with the - // small over-estimation that we get in this case. TODO: actually remove this bigram - // if discretizedFrequency < 0. - final int finalBigramFrequency = discretizedFrequency > 0 ? discretizedFrequency : 0; - bigramFlags += finalBigramFrequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY; - return bigramFlags; - } - - /** - * Makes the 2-byte value for options flags. - */ - private static final int makeOptionsValue(final FusionDictionary dictionary, - final FormatOptions formatOptions) { - final DictionaryOptions options = dictionary.mOptions; - final boolean hasBigrams = dictionary.hasBigrams(); - return (options.mFrenchLigatureProcessing ? FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG : 0) - + (options.mGermanUmlautProcessing ? FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG : 0) - + (hasBigrams ? FormatSpec.CONTAINS_BIGRAMS_FLAG : 0) - + (formatOptions.mSupportsDynamicUpdate ? FormatSpec.SUPPORTS_DYNAMIC_UPDATE : 0); - } - - /** - * Makes the flag value for a shortcut. - * - * @param more whether there are more attributes after this one. - * @param frequency the frequency of the attribute, 0..15 - * @return the flags - */ - static final int makeShortcutFlags(final boolean more, final int frequency) { - return (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0) - + (frequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY); - } - - private static final int writeParentAddress(final byte[] buffer, final int index, - final int address, final FormatOptions formatOptions) { - if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) { - if (address == FormatSpec.NO_PARENT_ADDRESS) { - buffer[index] = buffer[index + 1] = buffer[index + 2] = 0; - } else { - final int absAddress = Math.abs(address); - assert(absAddress <= FormatSpec.SINT24_MAX); - buffer[index] = (byte)((address < 0 ? FormatSpec.MSB8 : 0) - | ((absAddress >> 16) & 0xFF)); - buffer[index + 1] = (byte)((absAddress >> 8) & 0xFF); - buffer[index + 2] = (byte)(absAddress & 0xFF); - } - return index + 3; - } else { - return index; - } - } - - /** - * Write a node to memory. The node is expected to have its final position cached. - * - * This can be an empty map, but the more is inside the faster the lookups will be. It can - * be carried on as long as nodes do not move. - * - * @param dict the dictionary the node is a part of (for relative offsets). - * @param buffer the memory buffer to write to. - * @param node the node to write. - * @param formatOptions file format options. - * @return the address of the END of the node. - */ - @SuppressWarnings("unused") - private static int writePlacedNode(final FusionDictionary dict, byte[] buffer, - final Node node, final FormatOptions formatOptions) { - // TODO: Make the code in common with BinaryDictIOUtils#writeCharGroup - int index = node.mCachedAddressAfterUpdate; - - final int groupCount = node.mData.size(); - final int countSize = getGroupCountSize(node); - final int parentAddress = node.mCachedParentAddress; - if (1 == countSize) { - buffer[index++] = (byte)groupCount; - } else if (2 == countSize) { - // We need to signal 2-byte size by setting the top bit of the MSB to 1, so - // we | 0x80 to do this. - buffer[index++] = (byte)((groupCount >> 8) | 0x80); - buffer[index++] = (byte)(groupCount & 0xFF); - } else { - throw new RuntimeException("Strange size from getGroupCountSize : " + countSize); - } - int groupAddress = index; - for (int i = 0; i < groupCount; ++i) { - final CharGroup group = node.mData.get(i); - if (index != group.mCachedAddressAfterUpdate) { - throw new RuntimeException("Bug: write index is not the same as the cached address " - + "of the group : " + index + " <> " + group.mCachedAddressAfterUpdate); - } - groupAddress += getGroupHeaderSize(group, formatOptions); - // Sanity checks. - if (DBG && group.mFrequency > FormatSpec.MAX_TERMINAL_FREQUENCY) { - throw new RuntimeException("A node has a frequency > " - + FormatSpec.MAX_TERMINAL_FREQUENCY - + " : " + group.mFrequency); - } - if (group.mFrequency >= 0) groupAddress += FormatSpec.GROUP_FREQUENCY_SIZE; - final int childrenOffset = null == group.mChildren - ? FormatSpec.NO_CHILDREN_ADDRESS - : group.mChildren.mCachedAddressAfterUpdate - groupAddress; - buffer[index++] = - makeCharGroupFlags(group, groupAddress, childrenOffset, formatOptions); - - if (parentAddress == FormatSpec.NO_PARENT_ADDRESS) { - index = writeParentAddress(buffer, index, parentAddress, formatOptions); - } else { - index = writeParentAddress(buffer, index, parentAddress - + (node.mCachedAddressAfterUpdate - group.mCachedAddressAfterUpdate), - formatOptions); - } - - index = CharEncoding.writeCharArray(group.mChars, buffer, index); - if (group.hasSeveralChars()) { - buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR; - } - if (group.mFrequency >= 0) { - buffer[index++] = (byte) group.mFrequency; - } - - final int shift; - if (formatOptions.mSupportsDynamicUpdate) { - shift = writeVariableSignedAddress(buffer, index, childrenOffset); - } else { - shift = writeVariableAddress(buffer, index, childrenOffset); - } - index += shift; - groupAddress += shift; - - // Write shortcuts - if (null != group.mShortcutTargets) { - final int indexOfShortcutByteSize = index; - index += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE; - groupAddress += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE; - final Iterator<WeightedString> shortcutIterator = group.mShortcutTargets.iterator(); - while (shortcutIterator.hasNext()) { - final WeightedString target = shortcutIterator.next(); - ++groupAddress; - int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(), - target.mFrequency); - buffer[index++] = (byte)shortcutFlags; - final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord); - index += shortcutShift; - groupAddress += shortcutShift; - } - final int shortcutByteSize = index - indexOfShortcutByteSize; - if (shortcutByteSize > 0xFFFF) { - throw new RuntimeException("Shortcut list too large"); - } - buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8); - buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF); - } - // Write bigrams - if (null != group.mBigrams) { - final Iterator<WeightedString> bigramIterator = group.mBigrams.iterator(); - while (bigramIterator.hasNext()) { - final WeightedString bigram = bigramIterator.next(); - final CharGroup target = - FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord); - final int addressOfBigram = target.mCachedAddressAfterUpdate; - final int unigramFrequencyForThisWord = target.mFrequency; - ++groupAddress; - final int offset = addressOfBigram - groupAddress; - int bigramFlags = makeBigramFlags(bigramIterator.hasNext(), offset, - bigram.mFrequency, unigramFrequencyForThisWord, bigram.mWord); - buffer[index++] = (byte)bigramFlags; - final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset)); - index += bigramShift; - groupAddress += bigramShift; - } - } - - } - if (formatOptions.mSupportsDynamicUpdate) { - buffer[index] = buffer[index + 1] = buffer[index + 2] - = FormatSpec.NO_FORWARD_LINK_ADDRESS; - index += FormatSpec.FORWARD_LINK_ADDRESS_SIZE; - } - if (index != node.mCachedAddressAfterUpdate + node.mCachedSize) throw new RuntimeException( - "Not the same size : written " - + (index - node.mCachedAddressAfterUpdate) + " bytes from a node that should have " - + node.mCachedSize + " bytes"); - return index; - } - - /** - * Dumps a collection of useful statistics about a node array. - * - * This prints purely informative stuff, like the total estimated file size, the - * number of nodes, of character groups, the repartition of each address size, etc - * - * @param nodes the node array. - */ - private static void showStatistics(ArrayList<Node> nodes) { - int firstTerminalAddress = Integer.MAX_VALUE; - int lastTerminalAddress = Integer.MIN_VALUE; - int size = 0; - int charGroups = 0; - int maxGroups = 0; - int maxRuns = 0; - for (final Node n : nodes) { - if (maxGroups < n.mData.size()) maxGroups = n.mData.size(); - for (final CharGroup cg : n.mData) { - ++charGroups; - if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length; - if (cg.mFrequency >= 0) { - if (n.mCachedAddressAfterUpdate < firstTerminalAddress) - firstTerminalAddress = n.mCachedAddressAfterUpdate; - if (n.mCachedAddressAfterUpdate > lastTerminalAddress) - lastTerminalAddress = n.mCachedAddressAfterUpdate; - } - } - if (n.mCachedAddressAfterUpdate + n.mCachedSize > size) { - size = n.mCachedAddressAfterUpdate + n.mCachedSize; - } - } - final int[] groupCounts = new int[maxGroups + 1]; - final int[] runCounts = new int[maxRuns + 1]; - for (final Node n : nodes) { - ++groupCounts[n.mData.size()]; - for (final CharGroup cg : n.mData) { - ++runCounts[cg.mChars.length]; - } - } - - MakedictLog.i("Statistics:\n" - + " total file size " + size + "\n" - + " " + nodes.size() + " nodes\n" - + " " + charGroups + " groups (" + ((float)charGroups / nodes.size()) - + " groups per node)\n" - + " first terminal at " + firstTerminalAddress + "\n" - + " last terminal at " + lastTerminalAddress + "\n" - + " Group stats : max = " + maxGroups); - for (int i = 0; i < groupCounts.length; ++i) { - MakedictLog.i(" " + i + " : " + groupCounts[i]); - } - MakedictLog.i(" Character run stats : max = " + maxRuns); - for (int i = 0; i < runCounts.length; ++i) { - MakedictLog.i(" " + i + " : " + runCounts[i]); - } - } - - /** - * Dumps a FusionDictionary to a file. - * - * This is the public entry point to write a dictionary to a file. - * - * @param destination the stream to write the binary data to. - * @param dict the dictionary to write. - * @param formatOptions file format options. - */ - public static void writeDictionaryBinary(final OutputStream destination, - final FusionDictionary dict, final FormatOptions formatOptions) - throws IOException, UnsupportedFormatException { - - // Addresses are limited to 3 bytes, but since addresses can be relative to each node, the - // structure itself is not limited to 16MB. However, if it is over 16MB deciding the order - // of the nodes becomes a quite complicated problem, because though the dictionary itself - // does not have a size limit, each node must still be within 16MB of all its children and - // parents. As long as this is ensured, the dictionary file may grow to any size. - - final int version = formatOptions.mVersion; - if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION - || version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) { - throw new UnsupportedFormatException("Requested file format version " + version - + ", but this implementation only supports versions " - + FormatSpec.MINIMUM_SUPPORTED_VERSION + " through " - + FormatSpec.MAXIMUM_SUPPORTED_VERSION); - } - - ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256); - - // The magic number in big-endian order. - // Magic number for all versions. - headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 24))); - headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 16))); - headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 8))); - headerBuffer.write((byte) (0xFF & FormatSpec.MAGIC_NUMBER)); - // Dictionary version. - headerBuffer.write((byte) (0xFF & (version >> 8))); - headerBuffer.write((byte) (0xFF & version)); - - // Options flags - final int options = makeOptionsValue(dict, formatOptions); - headerBuffer.write((byte) (0xFF & (options >> 8))); - headerBuffer.write((byte) (0xFF & options)); - final int headerSizeOffset = headerBuffer.size(); - // Placeholder to be written later with header size. - for (int i = 0; i < 4; ++i) { - headerBuffer.write(0); - } - // Write out the options. - for (final String key : dict.mOptions.mAttributes.keySet()) { - final String value = dict.mOptions.mAttributes.get(key); - CharEncoding.writeString(headerBuffer, key); - CharEncoding.writeString(headerBuffer, value); - } - final int size = headerBuffer.size(); - final byte[] bytes = headerBuffer.toByteArray(); - // Write out the header size. - bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24)); - bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16)); - bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8)); - bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0)); - destination.write(bytes); - - headerBuffer.close(); - - // Leave the choice of the optimal node order to the flattenTree function. - MakedictLog.i("Flattening the tree..."); - ArrayList<Node> flatNodes = flattenTree(dict.mRoot); - - MakedictLog.i("Computing addresses..."); - computeAddresses(dict, flatNodes, formatOptions); - MakedictLog.i("Checking array..."); - if (DBG) checkFlatNodeArray(flatNodes); - - // Create a buffer that matches the final dictionary size. - final Node lastNode = flatNodes.get(flatNodes.size() - 1); - final int bufferSize = lastNode.mCachedAddressAfterUpdate + lastNode.mCachedSize; - final byte[] buffer = new byte[bufferSize]; - int index = 0; - - MakedictLog.i("Writing file..."); - int dataEndOffset = 0; - for (Node n : flatNodes) { - dataEndOffset = writePlacedNode(dict, buffer, n, formatOptions); - } - - if (DBG) showStatistics(flatNodes); - - destination.write(buffer, 0, dataEndOffset); - - destination.close(); - MakedictLog.i("Done"); - } - - - // Input methods: Read a binary dictionary to memory. - // readDictionaryBinary is the public entry point for them. - - static int getChildrenAddressSize(final int optionFlags, - final FormatOptions formatOptions) { - if (formatOptions.mSupportsDynamicUpdate) return FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE; - switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) { - case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE: - return 1; - case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES: - return 2; - case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES: - return 3; - case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS: - default: - return 0; - } - } - - static int readChildrenAddress(final FusionDictionaryBufferInterface buffer, - final int optionFlags, final FormatOptions options) { - if (options.mSupportsDynamicUpdate) { - final int address = buffer.readUnsignedInt24(); - if (address == 0) return FormatSpec.NO_CHILDREN_ADDRESS; - if ((address & FormatSpec.MSB24) != 0) { - return -(address & FormatSpec.SINT24_MAX); - } else { - return address; - } - } - int address; - switch (optionFlags & FormatSpec.MASK_GROUP_ADDRESS_TYPE) { - case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE: - return buffer.readUnsignedByte(); - case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES: - return buffer.readUnsignedShort(); - case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES: - return buffer.readUnsignedInt24(); - case FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS: - default: - return FormatSpec.NO_CHILDREN_ADDRESS; - } - } - - static int readParentAddress(final FusionDictionaryBufferInterface buffer, - final FormatOptions formatOptions) { - if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) { - final int parentAddress = buffer.readUnsignedInt24(); - final int sign = ((parentAddress & FormatSpec.MSB24) != 0) ? -1 : 1; - return sign * (parentAddress & FormatSpec.SINT24_MAX); - } else { - return FormatSpec.NO_PARENT_ADDRESS; - } - } - - private static final int[] CHARACTER_BUFFER = new int[FormatSpec.MAX_WORD_LENGTH]; - public static CharGroupInfo readCharGroup(final FusionDictionaryBufferInterface buffer, - final int originalGroupAddress, final FormatOptions options) { - int addressPointer = originalGroupAddress; - final int flags = buffer.readUnsignedByte(); - ++addressPointer; - - final int parentAddress = readParentAddress(buffer, options); - if (BinaryDictIOUtils.supportsDynamicUpdate(options)) { - addressPointer += 3; - } - - final int characters[]; - if (0 != (flags & FormatSpec.FLAG_HAS_MULTIPLE_CHARS)) { - int index = 0; - int character = CharEncoding.readChar(buffer); - addressPointer += CharEncoding.getCharSize(character); - while (-1 != character) { - // FusionDictionary is making sure that the length of the word is smaller than - // MAX_WORD_LENGTH. - // So we'll never write past the end of CHARACTER_BUFFER. - CHARACTER_BUFFER[index++] = character; - character = CharEncoding.readChar(buffer); - addressPointer += CharEncoding.getCharSize(character); - } - characters = Arrays.copyOfRange(CHARACTER_BUFFER, 0, index); - } else { - final int character = CharEncoding.readChar(buffer); - addressPointer += CharEncoding.getCharSize(character); - characters = new int[] { character }; - } - final int frequency; - if (0 != (FormatSpec.FLAG_IS_TERMINAL & flags)) { - ++addressPointer; - frequency = buffer.readUnsignedByte(); - } else { - frequency = CharGroup.NOT_A_TERMINAL; - } - int childrenAddress = readChildrenAddress(buffer, flags, options); - if (childrenAddress != FormatSpec.NO_CHILDREN_ADDRESS) { - childrenAddress += addressPointer; - } - addressPointer += getChildrenAddressSize(flags, options); - ArrayList<WeightedString> shortcutTargets = null; - if (0 != (flags & FormatSpec.FLAG_HAS_SHORTCUT_TARGETS)) { - final int pointerBefore = buffer.position(); - shortcutTargets = new ArrayList<WeightedString>(); - buffer.readUnsignedShort(); // Skip the size - while (true) { - final int targetFlags = buffer.readUnsignedByte(); - final String word = CharEncoding.readString(buffer); - shortcutTargets.add(new WeightedString(word, - targetFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY)); - if (0 == (targetFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break; - } - addressPointer += buffer.position() - pointerBefore; - } - ArrayList<PendingAttribute> bigrams = null; - if (0 != (flags & FormatSpec.FLAG_HAS_BIGRAMS)) { - bigrams = new ArrayList<PendingAttribute>(); - int bigramCount = 0; - while (bigramCount++ < FormatSpec.MAX_BIGRAMS_IN_A_GROUP) { - final int bigramFlags = buffer.readUnsignedByte(); - ++addressPointer; - final int sign = 0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE) - ? 1 : -1; - int bigramAddress = addressPointer; - switch (bigramFlags & FormatSpec.MASK_ATTRIBUTE_ADDRESS_TYPE) { - case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE: - bigramAddress += sign * buffer.readUnsignedByte(); - addressPointer += 1; - break; - case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES: - bigramAddress += sign * buffer.readUnsignedShort(); - addressPointer += 2; - break; - case FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES: - final int offset = (buffer.readUnsignedByte() << 16) - + buffer.readUnsignedShort(); - bigramAddress += sign * offset; - addressPointer += 3; - break; - default: - throw new RuntimeException("Has bigrams with no address"); - } - bigrams.add(new PendingAttribute(bigramFlags & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY, - bigramAddress)); - if (0 == (bigramFlags & FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT)) break; - } - if (bigramCount >= FormatSpec.MAX_BIGRAMS_IN_A_GROUP) { - MakedictLog.d("too many bigrams in a group."); - } - } - return new CharGroupInfo(originalGroupAddress, addressPointer, flags, characters, frequency, - parentAddress, childrenAddress, shortcutTargets, bigrams); - } - - /** - * Reads and returns the char group count out of a buffer and forwards the pointer. - */ - public static int readCharGroupCount(final FusionDictionaryBufferInterface buffer) { - final int msb = buffer.readUnsignedByte(); - if (FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT >= msb) { - return msb; - } else { - return ((FormatSpec.MAX_CHARGROUPS_FOR_ONE_BYTE_CHARGROUP_COUNT & msb) << 8) - + buffer.readUnsignedByte(); - } - } - - // The word cache here is a stopgap bandaid to help the catastrophic performance - // of this method. Since it performs direct, unbuffered random access to the file and - // may be called hundreds of thousands of times, the resulting performance is not - // reasonable without some kind of cache. Thus: - private static TreeMap<Integer, WeightedString> wordCache = - new TreeMap<Integer, WeightedString>(); - /** - * Finds, as a string, the word at the address passed as an argument. - * - * @param buffer the buffer to read from. - * @param headerSize the size of the header. - * @param address the address to seek. - * @param formatOptions file format options. - * @return the word with its frequency, as a weighted string. - */ - /* package for tests */ static WeightedString getWordAtAddress( - final FusionDictionaryBufferInterface buffer, final int headerSize, final int address, - final FormatOptions formatOptions) { - final WeightedString cachedString = wordCache.get(address); - if (null != cachedString) return cachedString; - - final WeightedString result; - final int originalPointer = buffer.position(); - buffer.position(address); - - if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) { - result = getWordAtAddressWithParentAddress(buffer, headerSize, address, formatOptions); - } else { - result = getWordAtAddressWithoutParentAddress(buffer, headerSize, address, - formatOptions); - } - - wordCache.put(address, result); - buffer.position(originalPointer); - return result; - } - - // TODO: static!? This will behave erratically when used in multi-threaded code. - // We need to fix this - private static int[] sGetWordBuffer = new int[FormatSpec.MAX_WORD_LENGTH]; - @SuppressWarnings("unused") - private static WeightedString getWordAtAddressWithParentAddress( - final FusionDictionaryBufferInterface buffer, final int headerSize, final int address, - final FormatOptions options) { - int currentAddress = address; - int index = FormatSpec.MAX_WORD_LENGTH - 1; - int frequency = Integer.MIN_VALUE; - // the length of the path from the root to the leaf is limited by MAX_WORD_LENGTH - for (int count = 0; count < FormatSpec.MAX_WORD_LENGTH; ++count) { - CharGroupInfo currentInfo; - int loopCounter = 0; - do { - buffer.position(currentAddress + headerSize); - currentInfo = readCharGroup(buffer, currentAddress, options); - if (BinaryDictIOUtils.isMovedGroup(currentInfo.mFlags, options)) { - currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress; - } - if (DBG && loopCounter++ > MAX_JUMPS) { - MakedictLog.d("Too many jumps - probably a bug"); - } - } while (BinaryDictIOUtils.isMovedGroup(currentInfo.mFlags, options)); - if (Integer.MIN_VALUE == frequency) frequency = currentInfo.mFrequency; - for (int i = 0; i < currentInfo.mCharacters.length; ++i) { - sGetWordBuffer[index--] = - currentInfo.mCharacters[currentInfo.mCharacters.length - i - 1]; - } - if (currentInfo.mParentAddress == FormatSpec.NO_PARENT_ADDRESS) break; - currentAddress = currentInfo.mParentAddress + currentInfo.mOriginalAddress; - } - - return new WeightedString( - new String(sGetWordBuffer, index + 1, FormatSpec.MAX_WORD_LENGTH - index - 1), - frequency); - } - - private static WeightedString getWordAtAddressWithoutParentAddress( - final FusionDictionaryBufferInterface buffer, final int headerSize, final int address, - final FormatOptions options) { - buffer.position(headerSize); - final int count = readCharGroupCount(buffer); - int groupOffset = BinaryDictIOUtils.getGroupCountSize(count); - final StringBuilder builder = new StringBuilder(); - WeightedString result = null; - - CharGroupInfo last = null; - for (int i = count - 1; i >= 0; --i) { - CharGroupInfo info = readCharGroup(buffer, groupOffset, options); - groupOffset = info.mEndAddress; - if (info.mOriginalAddress == address) { - builder.append(new String(info.mCharacters, 0, info.mCharacters.length)); - result = new WeightedString(builder.toString(), info.mFrequency); - break; // and return - } - if (BinaryDictIOUtils.hasChildrenAddress(info.mChildrenAddress)) { - if (info.mChildrenAddress > address) { - if (null == last) continue; - builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); - buffer.position(last.mChildrenAddress + headerSize); - i = readCharGroupCount(buffer); - groupOffset = last.mChildrenAddress + BinaryDictIOUtils.getGroupCountSize(i); - last = null; - continue; - } - last = info; - } - if (0 == i && BinaryDictIOUtils.hasChildrenAddress(last.mChildrenAddress)) { - builder.append(new String(last.mCharacters, 0, last.mCharacters.length)); - buffer.position(last.mChildrenAddress + headerSize); - i = readCharGroupCount(buffer); - groupOffset = last.mChildrenAddress + BinaryDictIOUtils.getGroupCountSize(i); - last = null; - continue; - } - } - return result; - } - - /** - * Reads a single node from a buffer. - * - * This methods reads the file at the current position. A node is fully expected to start at - * the current position. - * This will recursively read other nodes into the structure, populating the reverse - * maps on the fly and using them to keep track of already read nodes. - * - * @param buffer the buffer, correctly positioned at the start of a node. - * @param headerSize the size, in bytes, of the file header. - * @param reverseNodeMap a mapping from addresses to already read nodes. - * @param reverseGroupMap a mapping from addresses to already read character groups. - * @param options file format options. - * @return the read node with all his children already read. - */ - private static Node readNode(final FusionDictionaryBufferInterface buffer, final int headerSize, - final Map<Integer, Node> reverseNodeMap, final Map<Integer, CharGroup> reverseGroupMap, - final FormatOptions options) - throws IOException { - final ArrayList<CharGroup> nodeContents = new ArrayList<CharGroup>(); - final int nodeOrigin = buffer.position() - headerSize; - - do { // Scan the linked-list node. - final int nodeHeadPosition = buffer.position() - headerSize; - final int count = readCharGroupCount(buffer); - int groupOffset = nodeHeadPosition + BinaryDictIOUtils.getGroupCountSize(count); - for (int i = count; i > 0; --i) { // Scan the array of CharGroup. - CharGroupInfo info = readCharGroup(buffer, groupOffset, options); - if (BinaryDictIOUtils.isMovedGroup(info.mFlags, options)) continue; - ArrayList<WeightedString> shortcutTargets = info.mShortcutTargets; - ArrayList<WeightedString> bigrams = null; - if (null != info.mBigrams) { - bigrams = new ArrayList<WeightedString>(); - for (PendingAttribute bigram : info.mBigrams) { - final WeightedString word = getWordAtAddress( - buffer, headerSize, bigram.mAddress, options); - final int reconstructedFrequency = - reconstructBigramFrequency(word.mFrequency, bigram.mFrequency); - bigrams.add(new WeightedString(word.mWord, reconstructedFrequency)); - } - } - if (BinaryDictIOUtils.hasChildrenAddress(info.mChildrenAddress)) { - Node children = reverseNodeMap.get(info.mChildrenAddress); - if (null == children) { - final int currentPosition = buffer.position(); - buffer.position(info.mChildrenAddress + headerSize); - children = readNode( - buffer, headerSize, reverseNodeMap, reverseGroupMap, options); - buffer.position(currentPosition); - } - nodeContents.add( - new CharGroup(info.mCharacters, shortcutTargets, bigrams, - info.mFrequency, - 0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD), - 0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED), children)); - } else { - nodeContents.add( - new CharGroup(info.mCharacters, shortcutTargets, bigrams, - info.mFrequency, - 0 != (info.mFlags & FormatSpec.FLAG_IS_NOT_A_WORD), - 0 != (info.mFlags & FormatSpec.FLAG_IS_BLACKLISTED))); - } - groupOffset = info.mEndAddress; - } - - // reach the end of the array. - if (options.mSupportsDynamicUpdate) { - final int nextAddress = buffer.readUnsignedInt24(); - if (nextAddress >= 0 && nextAddress < buffer.limit()) { - buffer.position(nextAddress); - } else { - break; - } - } - } while (options.mSupportsDynamicUpdate && - buffer.position() != FormatSpec.NO_FORWARD_LINK_ADDRESS); - - final Node node = new Node(nodeContents); - node.mCachedAddressBeforeUpdate = nodeOrigin; - node.mCachedAddressAfterUpdate = nodeOrigin; - reverseNodeMap.put(node.mCachedAddressAfterUpdate, node); - return node; - } - - /** - * Helper function to get the binary format version from the header. - * @throws IOException - */ - private static int getFormatVersion(final FusionDictionaryBufferInterface buffer) - throws IOException { - final int magic = buffer.readInt(); - if (FormatSpec.MAGIC_NUMBER == magic) return buffer.readUnsignedShort(); - return FormatSpec.NOT_A_VERSION_NUMBER; - } - - /** - * Helper function to get and validate the binary format version. - * @throws UnsupportedFormatException - * @throws IOException - */ - private static int checkFormatVersion(final FusionDictionaryBufferInterface buffer) - throws IOException, UnsupportedFormatException { - final int version = getFormatVersion(buffer); - if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION - || version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) { - throw new UnsupportedFormatException("This file has version " + version - + ", but this implementation does not support versions above " - + FormatSpec.MAXIMUM_SUPPORTED_VERSION); - } - return version; - } - - /** - * Reads a header from a buffer. - * @param buffer the buffer to read. - * @throws IOException - * @throws UnsupportedFormatException - */ - public static FileHeader readHeader(final FusionDictionaryBufferInterface buffer) - throws IOException, UnsupportedFormatException { - final int version = checkFormatVersion(buffer); - final int optionsFlags = buffer.readUnsignedShort(); - - final HashMap<String, String> attributes = new HashMap<String, String>(); - final int headerSize; - headerSize = buffer.readInt(); - - if (headerSize < 0) { - throw new UnsupportedFormatException("header size can't be negative."); - } - - populateOptions(buffer, headerSize, attributes); - buffer.position(headerSize); - - final FileHeader header = new FileHeader(headerSize, - new FusionDictionary.DictionaryOptions(attributes, - 0 != (optionsFlags & FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG), - 0 != (optionsFlags & FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG)), - new FormatOptions(version, - 0 != (optionsFlags & FormatSpec.SUPPORTS_DYNAMIC_UPDATE))); - return header; - } - - /** - * Reads options from a buffer and populate a map with their contents. - * - * The buffer is read at the current position, so the caller must take care the pointer - * is in the right place before calling this. - */ - public static void populateOptions(final FusionDictionaryBufferInterface buffer, - final int headerSize, final HashMap<String, String> options) { - while (buffer.position() < headerSize) { - final String key = CharEncoding.readString(buffer); - final String value = CharEncoding.readString(buffer); - options.put(key, value); - } - } - - /** - * Reads a buffer and returns the memory representation of the dictionary. - * - * This high-level method takes a buffer and reads its contents, populating a - * FusionDictionary structure. The optional dict argument is an existing dictionary to - * which words from the buffer should be added. If it is null, a new dictionary is created. - * - * @param reader the reader. - * @param dict an optional dictionary to add words to, or null. - * @return the created (or merged) dictionary. - */ - @UsedForTesting - public static FusionDictionary readDictionaryBinary(final BinaryDictReader reader, - final FusionDictionary dict) throws FileNotFoundException, IOException, - UnsupportedFormatException { - // clear cache - wordCache.clear(); - - // if the buffer has not been opened, open the buffer with bytebuffer. - if (reader.getBuffer() == null) reader.openBuffer( - new BinaryDictReader.FusionDictionaryBufferFromByteBufferFactory()); - if (reader.getBuffer() == null) { - MakedictLog.e("Cannot open the buffer"); - } - - // Read header - final FileHeader header = readHeader(reader.getBuffer()); - - Map<Integer, Node> reverseNodeMapping = new TreeMap<Integer, Node>(); - Map<Integer, CharGroup> reverseGroupMapping = new TreeMap<Integer, CharGroup>(); - final Node root = readNode(reader.getBuffer(), header.mHeaderSize, reverseNodeMapping, - reverseGroupMapping, header.mFormatOptions); - - FusionDictionary newDict = new FusionDictionary(root, header.mDictionaryOptions); - if (null != dict) { - for (final Word w : dict) { - if (w.mIsBlacklistEntry) { - newDict.addBlacklistEntry(w.mWord, w.mShortcutTargets, w.mIsNotAWord); - } else { - newDict.add(w.mWord, w.mFrequency, w.mShortcutTargets, w.mIsNotAWord); - } - } - for (final Word w : dict) { - // By construction a binary dictionary may not have bigrams pointing to - // words that are not also registered as unigrams so we don't have to avoid - // them explicitly here. - for (final WeightedString bigram : w.mBigrams) { - newDict.setBigram(w.mWord, bigram.mWord, bigram.mFrequency); - } - } - } - - return newDict; - } - - /** - * Helper method to pass a file name instead of a File object to isBinaryDictionary. - */ - public static boolean isBinaryDictionary(final String filename) { - final File file = new File(filename); - return isBinaryDictionary(file); - } - - /** - * Basic test to find out whether the file is a binary dictionary or not. - * - * Concretely this only tests the magic number. - * - * @param file The file to test. - * @return true if it's a binary dictionary, false otherwise - */ - public static boolean isBinaryDictionary(final File file) { - FileInputStream inStream = null; - try { - inStream = new FileInputStream(file); - final ByteBuffer buffer = inStream.getChannel().map( - FileChannel.MapMode.READ_ONLY, 0, file.length()); - final int version = getFormatVersion(new ByteBufferWrapper(buffer)); - return (version >= FormatSpec.MINIMUM_SUPPORTED_VERSION - && version <= FormatSpec.MAXIMUM_SUPPORTED_VERSION); - } catch (FileNotFoundException e) { - return false; - } catch (IOException e) { - return false; - } finally { - if (inStream != null) { - try { - inStream.close(); - } catch (IOException e) { - // do nothing - } - } - } - } - - /** - * Calculate bigram frequency from compressed value - * - * @see #makeBigramFlags - * - * @param unigramFrequency - * @param bigramFrequency compressed frequency - * @return approximate bigram frequency - */ - public static int reconstructBigramFrequency(final int unigramFrequency, - final int bigramFrequency) { - final float stepSize = (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency) - / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY); - final float resultFreqFloat = unigramFrequency + stepSize * (bigramFrequency + 1.0f); - return (int)resultFreqFloat; - } -} |