aboutsummaryrefslogtreecommitdiffstats
path: root/tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java
diff options
context:
space:
mode:
authorKeisuke Kuroyanagi <ksk@google.com>2014-03-27 15:30:32 +0900
committerKeisuke Kuroyanagi <ksk@google.com>2014-03-27 15:30:32 +0900
commit93cda5bb396c22f1781e390debaf75d54cf7c0dc (patch)
tree391903a9f8875520980da23f1bc5911c8fa78fc2 /tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java
parent37b9562fd7b593c90d7ab383ec650f39a7c0f621 (diff)
downloadlatinime-93cda5bb396c22f1781e390debaf75d54cf7c0dc.tar.gz
latinime-93cda5bb396c22f1781e390debaf75d54cf7c0dc.tar.xz
latinime-93cda5bb396c22f1781e390debaf75d54cf7c0dc.zip
Move code only used for dicttool and tests under tests.
Bug: 13035567 Change-Id: I13c6df013ef2b67c9bf67455d9c32d283bf9ea2e
Diffstat (limited to 'tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java')
-rw-r--r--tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java881
1 files changed, 881 insertions, 0 deletions
diff --git a/tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java b/tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java
new file mode 100644
index 000000000..39bd98bad
--- /dev/null
+++ b/tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java
@@ -0,0 +1,881 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package com.android.inputmethod.latin.makedict;
+
+import com.android.inputmethod.annotations.UsedForTesting;
+import com.android.inputmethod.latin.makedict.BinaryDictDecoderUtils.CharEncoding;
+import com.android.inputmethod.latin.makedict.BinaryDictDecoderUtils.DictBuffer;
+import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
+import com.android.inputmethod.latin.makedict.FusionDictionary.PtNode;
+import com.android.inputmethod.latin.makedict.FusionDictionary.PtNodeArray;
+
+import java.io.ByteArrayOutputStream;
+import java.io.IOException;
+import java.io.OutputStream;
+import java.util.ArrayList;
+
+/**
+ * Encodes binary files for a FusionDictionary.
+ *
+ * All the methods in this class are static.
+ *
+ * TODO: Rename this class to DictEncoderUtils.
+ */
+public class BinaryDictEncoderUtils {
+
+ private static final boolean DBG = MakedictLog.DBG;
+
+ private BinaryDictEncoderUtils() {
+ // This utility class is not publicly instantiable.
+ }
+
+ // Arbitrary limit to how much passes we consider address size compression should
+ // terminate in. At the time of this writing, our largest dictionary completes
+ // compression in five passes.
+ // If the number of passes exceeds this number, makedict bails with an exception on
+ // suspicion that a bug might be causing an infinite loop.
+ private static final int MAX_PASSES = 24;
+
+ /**
+ * Compute the binary size of the character array.
+ *
+ * If only one character, this is the size of this character. If many, it's the sum of their
+ * sizes + 1 byte for the terminator.
+ *
+ * @param characters the character array
+ * @return the size of the char array, including the terminator if any
+ */
+ static int getPtNodeCharactersSize(final int[] characters) {
+ int size = CharEncoding.getCharArraySize(characters);
+ if (characters.length > 1) size += FormatSpec.PTNODE_TERMINATOR_SIZE;
+ return size;
+ }
+
+ /**
+ * Compute the binary size of the character array in a PtNode
+ *
+ * If only one character, this is the size of this character. If many, it's the sum of their
+ * sizes + 1 byte for the terminator.
+ *
+ * @param ptNode the PtNode
+ * @return the size of the char array, including the terminator if any
+ */
+ private static int getPtNodeCharactersSize(final PtNode ptNode) {
+ return getPtNodeCharactersSize(ptNode.mChars);
+ }
+
+ /**
+ * Compute the binary size of the PtNode count for a node array.
+ * @param nodeArray the nodeArray
+ * @return the size of the PtNode count, either 1 or 2 bytes.
+ */
+ private static int getPtNodeCountSize(final PtNodeArray nodeArray) {
+ return BinaryDictIOUtils.getPtNodeCountSize(nodeArray.mData.size());
+ }
+
+ /**
+ * Compute the size of a shortcut in bytes.
+ */
+ private static int getShortcutSize(final WeightedString shortcut) {
+ int size = FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE;
+ final String word = shortcut.mWord;
+ final int length = word.length();
+ for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
+ final int codePoint = word.codePointAt(i);
+ size += CharEncoding.getCharSize(codePoint);
+ }
+ size += FormatSpec.PTNODE_TERMINATOR_SIZE;
+ return size;
+ }
+
+ /**
+ * Compute the size of a shortcut list in bytes.
+ *
+ * This is known in advance and does not change according to position in the file
+ * like address lists do.
+ */
+ static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) {
+ if (null == shortcutList || shortcutList.isEmpty()) return 0;
+ int size = FormatSpec.PTNODE_SHORTCUT_LIST_SIZE_SIZE;
+ for (final WeightedString shortcut : shortcutList) {
+ size += getShortcutSize(shortcut);
+ }
+ return size;
+ }
+
+ /**
+ * Compute the maximum size of a PtNode, assuming 3-byte addresses for everything.
+ *
+ * @param ptNode the PtNode to compute the size of.
+ * @return the maximum size of the PtNode.
+ */
+ private static int getPtNodeMaximumSize(final PtNode ptNode) {
+ int size = getNodeHeaderSize(ptNode);
+ if (ptNode.isTerminal()) {
+ // If terminal, one byte for the frequency.
+ size += FormatSpec.PTNODE_FREQUENCY_SIZE;
+ }
+ size += FormatSpec.PTNODE_MAX_ADDRESS_SIZE; // For children address
+ size += getShortcutListSize(ptNode.mShortcutTargets);
+ if (null != ptNode.mBigrams) {
+ size += (FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE
+ + FormatSpec.PTNODE_ATTRIBUTE_MAX_ADDRESS_SIZE)
+ * ptNode.mBigrams.size();
+ }
+ return size;
+ }
+
+ /**
+ * Compute the maximum size of each PtNode of a PtNode array, assuming 3-byte addresses for
+ * everything, and caches it in the `mCachedSize' member of the nodes; deduce the size of
+ * the containing node array, and cache it it its 'mCachedSize' member.
+ *
+ * @param ptNodeArray the node array to compute the maximum size of.
+ */
+ private static void calculatePtNodeArrayMaximumSize(final PtNodeArray ptNodeArray) {
+ int size = getPtNodeCountSize(ptNodeArray);
+ for (PtNode node : ptNodeArray.mData) {
+ final int nodeSize = getPtNodeMaximumSize(node);
+ node.mCachedSize = nodeSize;
+ size += nodeSize;
+ }
+ ptNodeArray.mCachedSize = size;
+ }
+
+ /**
+ * Compute the size of the header (flag + [parent address] + characters size) of a PtNode.
+ *
+ * @param ptNode the PtNode of which to compute the size of the header
+ */
+ private static int getNodeHeaderSize(final PtNode ptNode) {
+ return FormatSpec.PTNODE_FLAGS_SIZE + getPtNodeCharactersSize(ptNode);
+ }
+
+ /**
+ * Compute the size, in bytes, that an address will occupy.
+ *
+ * This can be used either for children addresses (which are always positive) or for
+ * attribute, which may be positive or negative but
+ * store their sign bit separately.
+ *
+ * @param address the address
+ * @return the byte size.
+ */
+ static int getByteSize(final int address) {
+ assert(address <= FormatSpec.UINT24_MAX);
+ if (!BinaryDictIOUtils.hasChildrenAddress(address)) {
+ return 0;
+ } else if (Math.abs(address) <= FormatSpec.UINT8_MAX) {
+ return 1;
+ } else if (Math.abs(address) <= FormatSpec.UINT16_MAX) {
+ return 2;
+ } else {
+ return 3;
+ }
+ }
+
+ static int writeUIntToBuffer(final byte[] buffer, int position, final int value,
+ final int size) {
+ switch(size) {
+ case 4:
+ buffer[position++] = (byte) ((value >> 24) & 0xFF);
+ /* fall through */
+ case 3:
+ buffer[position++] = (byte) ((value >> 16) & 0xFF);
+ /* fall through */
+ case 2:
+ buffer[position++] = (byte) ((value >> 8) & 0xFF);
+ /* fall through */
+ case 1:
+ buffer[position++] = (byte) (value & 0xFF);
+ break;
+ default:
+ /* nop */
+ }
+ return position;
+ }
+
+ static void writeUIntToStream(final OutputStream stream, final int value, final int size)
+ throws IOException {
+ switch(size) {
+ case 4:
+ stream.write((value >> 24) & 0xFF);
+ /* fall through */
+ case 3:
+ stream.write((value >> 16) & 0xFF);
+ /* fall through */
+ case 2:
+ stream.write((value >> 8) & 0xFF);
+ /* fall through */
+ case 1:
+ stream.write(value & 0xFF);
+ break;
+ default:
+ /* nop */
+ }
+ }
+
+ @UsedForTesting
+ static void writeUIntToDictBuffer(final DictBuffer dictBuffer, final int value,
+ final int size) {
+ switch(size) {
+ case 4:
+ dictBuffer.put((byte) ((value >> 24) & 0xFF));
+ /* fall through */
+ case 3:
+ dictBuffer.put((byte) ((value >> 16) & 0xFF));
+ /* fall through */
+ case 2:
+ dictBuffer.put((byte) ((value >> 8) & 0xFF));
+ /* fall through */
+ case 1:
+ dictBuffer.put((byte) (value & 0xFF));
+ break;
+ default:
+ /* nop */
+ }
+ }
+
+ // End utility methods
+
+ // This method is responsible for finding a nice ordering of the nodes that favors run-time
+ // cache performance and dictionary size.
+ /* package for tests */ static ArrayList<PtNodeArray> flattenTree(
+ final PtNodeArray rootNodeArray) {
+ final int treeSize = FusionDictionary.countPtNodes(rootNodeArray);
+ MakedictLog.i("Counted nodes : " + treeSize);
+ final ArrayList<PtNodeArray> flatTree = new ArrayList<PtNodeArray>(treeSize);
+ return flattenTreeInner(flatTree, rootNodeArray);
+ }
+
+ private static ArrayList<PtNodeArray> flattenTreeInner(final ArrayList<PtNodeArray> list,
+ final PtNodeArray ptNodeArray) {
+ // Removing the node is necessary if the tails are merged, because we would then
+ // add the same node several times when we only want it once. A number of places in
+ // the code also depends on any node being only once in the list.
+ // Merging tails can only be done if there are no attributes. Searching for attributes
+ // in LatinIME code depends on a total breadth-first ordering, which merging tails
+ // breaks. If there are no attributes, it should be fine (and reduce the file size)
+ // to merge tails, and removing the node from the list would be necessary. However,
+ // we don't merge tails because breaking the breadth-first ordering would result in
+ // extreme overhead at bigram lookup time (it would make the search function O(n) instead
+ // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty
+ // high).
+ // If no nodes are ever merged, we can't have the same node twice in the list, hence
+ // searching for duplicates in unnecessary. It is also very performance consuming,
+ // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making
+ // this simple list.remove operation O(n*n) overall. On Android this overhead is very
+ // high.
+ // For future reference, the code to remove duplicate is a simple : list.remove(node);
+ list.add(ptNodeArray);
+ final ArrayList<PtNode> branches = ptNodeArray.mData;
+ for (PtNode ptNode : branches) {
+ if (null != ptNode.mChildren) flattenTreeInner(list, ptNode.mChildren);
+ }
+ return list;
+ }
+
+ /**
+ * Get the offset from a position inside a current node array to a target node array, during
+ * update.
+ *
+ * If the current node array is before the target node array, the target node array has not
+ * been updated yet, so we should return the offset from the old position of the current node
+ * array to the old position of the target node array. If on the other hand the target is
+ * before the current node array, it already has been updated, so we should return the offset
+ * from the new position in the current node array to the new position in the target node
+ * array.
+ *
+ * @param currentNodeArray node array containing the PtNode where the offset will be written
+ * @param offsetFromStartOfCurrentNodeArray offset, in bytes, from the start of currentNodeArray
+ * @param targetNodeArray the target node array to get the offset to
+ * @return the offset to the target node array
+ */
+ private static int getOffsetToTargetNodeArrayDuringUpdate(final PtNodeArray currentNodeArray,
+ final int offsetFromStartOfCurrentNodeArray, final PtNodeArray targetNodeArray) {
+ final boolean isTargetBeforeCurrent = (targetNodeArray.mCachedAddressBeforeUpdate
+ < currentNodeArray.mCachedAddressBeforeUpdate);
+ if (isTargetBeforeCurrent) {
+ return targetNodeArray.mCachedAddressAfterUpdate
+ - (currentNodeArray.mCachedAddressAfterUpdate
+ + offsetFromStartOfCurrentNodeArray);
+ } else {
+ return targetNodeArray.mCachedAddressBeforeUpdate
+ - (currentNodeArray.mCachedAddressBeforeUpdate
+ + offsetFromStartOfCurrentNodeArray);
+ }
+ }
+
+ /**
+ * Get the offset from a position inside a current node array to a target PtNode, during
+ * update.
+ *
+ * @param currentNodeArray node array containing the PtNode where the offset will be written
+ * @param offsetFromStartOfCurrentNodeArray offset, in bytes, from the start of currentNodeArray
+ * @param targetPtNode the target PtNode to get the offset to
+ * @return the offset to the target PtNode
+ */
+ // TODO: is there any way to factorize this method with the one above?
+ private static int getOffsetToTargetPtNodeDuringUpdate(final PtNodeArray currentNodeArray,
+ final int offsetFromStartOfCurrentNodeArray, final PtNode targetPtNode) {
+ final int oldOffsetBasePoint = currentNodeArray.mCachedAddressBeforeUpdate
+ + offsetFromStartOfCurrentNodeArray;
+ final boolean isTargetBeforeCurrent = (targetPtNode.mCachedAddressBeforeUpdate
+ < oldOffsetBasePoint);
+ // If the target is before the current node array, then its address has already been
+ // updated. We can use the AfterUpdate member, and compare it to our own member after
+ // update. Otherwise, the AfterUpdate member is not updated yet, so we need to use the
+ // BeforeUpdate member, and of course we have to compare this to our own address before
+ // update.
+ if (isTargetBeforeCurrent) {
+ final int newOffsetBasePoint = currentNodeArray.mCachedAddressAfterUpdate
+ + offsetFromStartOfCurrentNodeArray;
+ return targetPtNode.mCachedAddressAfterUpdate - newOffsetBasePoint;
+ } else {
+ return targetPtNode.mCachedAddressBeforeUpdate - oldOffsetBasePoint;
+ }
+ }
+
+ /**
+ * Computes the actual node array size, based on the cached addresses of the children nodes.
+ *
+ * Each node array stores its tentative address. During dictionary address computing, these
+ * are not final, but they can be used to compute the node array size (the node array size
+ * depends on the address of the children because the number of bytes necessary to store an
+ * address depends on its numeric value. The return value indicates whether the node array
+ * contents (as in, any of the addresses stored in the cache fields) have changed with
+ * respect to their previous value.
+ *
+ * @param ptNodeArray the node array to compute the size of.
+ * @param dict the dictionary in which the word/attributes are to be found.
+ * @return false if none of the cached addresses inside the node array changed, true otherwise.
+ */
+ private static boolean computeActualPtNodeArraySize(final PtNodeArray ptNodeArray,
+ final FusionDictionary dict) {
+ boolean changed = false;
+ int size = getPtNodeCountSize(ptNodeArray);
+ for (PtNode ptNode : ptNodeArray.mData) {
+ ptNode.mCachedAddressAfterUpdate = ptNodeArray.mCachedAddressAfterUpdate + size;
+ if (ptNode.mCachedAddressAfterUpdate != ptNode.mCachedAddressBeforeUpdate) {
+ changed = true;
+ }
+ int nodeSize = getNodeHeaderSize(ptNode);
+ if (ptNode.isTerminal()) {
+ nodeSize += FormatSpec.PTNODE_FREQUENCY_SIZE;
+ }
+ if (null != ptNode.mChildren) {
+ nodeSize += getByteSize(getOffsetToTargetNodeArrayDuringUpdate(ptNodeArray,
+ nodeSize + size, ptNode.mChildren));
+ }
+ nodeSize += getShortcutListSize(ptNode.mShortcutTargets);
+ if (null != ptNode.mBigrams) {
+ for (WeightedString bigram : ptNode.mBigrams) {
+ final int offset = getOffsetToTargetPtNodeDuringUpdate(ptNodeArray,
+ nodeSize + size + FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE,
+ FusionDictionary.findWordInTree(dict.mRootNodeArray, bigram.mWord));
+ nodeSize += getByteSize(offset) + FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE;
+ }
+ }
+ ptNode.mCachedSize = nodeSize;
+ size += nodeSize;
+ }
+ if (ptNodeArray.mCachedSize != size) {
+ ptNodeArray.mCachedSize = size;
+ changed = true;
+ }
+ return changed;
+ }
+
+ /**
+ * Initializes the cached addresses of node arrays and their containing nodes from their size.
+ *
+ * @param flatNodes the list of node arrays.
+ * @return the byte size of the entire stack.
+ */
+ private static int initializePtNodeArraysCachedAddresses(
+ final ArrayList<PtNodeArray> flatNodes) {
+ int nodeArrayOffset = 0;
+ for (final PtNodeArray nodeArray : flatNodes) {
+ nodeArray.mCachedAddressBeforeUpdate = nodeArrayOffset;
+ int nodeCountSize = getPtNodeCountSize(nodeArray);
+ int nodeffset = 0;
+ for (final PtNode ptNode : nodeArray.mData) {
+ ptNode.mCachedAddressBeforeUpdate = ptNode.mCachedAddressAfterUpdate =
+ nodeCountSize + nodeArrayOffset + nodeffset;
+ nodeffset += ptNode.mCachedSize;
+ }
+ nodeArrayOffset += nodeArray.mCachedSize;
+ }
+ return nodeArrayOffset;
+ }
+
+ /**
+ * Updates the cached addresses of node arrays after recomputing their new positions.
+ *
+ * @param flatNodes the list of node arrays.
+ */
+ private static void updatePtNodeArraysCachedAddresses(final ArrayList<PtNodeArray> flatNodes) {
+ for (final PtNodeArray nodeArray : flatNodes) {
+ nodeArray.mCachedAddressBeforeUpdate = nodeArray.mCachedAddressAfterUpdate;
+ for (final PtNode ptNode : nodeArray.mData) {
+ ptNode.mCachedAddressBeforeUpdate = ptNode.mCachedAddressAfterUpdate;
+ }
+ }
+ }
+
+ /**
+ * Compute the addresses and sizes of an ordered list of PtNode arrays.
+ *
+ * This method takes a list of PtNode arrays and will update their cached address and size
+ * values so that they can be written into a file. It determines the smallest size each of the
+ * PtNode arrays can be given the addresses of its children and attributes, and store that into
+ * each PtNode.
+ * The order of the PtNode is given by the order of the array. This method makes no effort
+ * to find a good order; it only mechanically computes the size this order results in.
+ *
+ * @param dict the dictionary
+ * @param flatNodes the ordered list of PtNode arrays
+ * @return the same array it was passed. The nodes have been updated for address and size.
+ */
+ /* package */ static ArrayList<PtNodeArray> computeAddresses(final FusionDictionary dict,
+ final ArrayList<PtNodeArray> flatNodes) {
+ // First get the worst possible sizes and offsets
+ for (final PtNodeArray n : flatNodes) {
+ calculatePtNodeArrayMaximumSize(n);
+ }
+ final int offset = initializePtNodeArraysCachedAddresses(flatNodes);
+
+ MakedictLog.i("Compressing the array addresses. Original size : " + offset);
+ MakedictLog.i("(Recursively seen size : " + offset + ")");
+
+ int passes = 0;
+ boolean changesDone = false;
+ do {
+ changesDone = false;
+ int ptNodeArrayStartOffset = 0;
+ for (final PtNodeArray ptNodeArray : flatNodes) {
+ ptNodeArray.mCachedAddressAfterUpdate = ptNodeArrayStartOffset;
+ final int oldNodeArraySize = ptNodeArray.mCachedSize;
+ final boolean changed = computeActualPtNodeArraySize(ptNodeArray, dict);
+ final int newNodeArraySize = ptNodeArray.mCachedSize;
+ if (oldNodeArraySize < newNodeArraySize) {
+ throw new RuntimeException("Increased size ?!");
+ }
+ ptNodeArrayStartOffset += newNodeArraySize;
+ changesDone |= changed;
+ }
+ updatePtNodeArraysCachedAddresses(flatNodes);
+ ++passes;
+ if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
+ } while (changesDone);
+
+ final PtNodeArray lastPtNodeArray = flatNodes.get(flatNodes.size() - 1);
+ MakedictLog.i("Compression complete in " + passes + " passes.");
+ MakedictLog.i("After address compression : "
+ + (lastPtNodeArray.mCachedAddressAfterUpdate + lastPtNodeArray.mCachedSize));
+
+ return flatNodes;
+ }
+
+ /**
+ * Sanity-checking method.
+ *
+ * This method checks a list of PtNode arrays for juxtaposition, that is, it will do
+ * nothing if each node array's cached address is actually the previous node array's address
+ * plus the previous node's size.
+ * If this is not the case, it will throw an exception.
+ *
+ * @param arrays the list of node arrays to check
+ */
+ /* package */ static void checkFlatPtNodeArrayList(final ArrayList<PtNodeArray> arrays) {
+ int offset = 0;
+ int index = 0;
+ for (final PtNodeArray ptNodeArray : arrays) {
+ // BeforeUpdate and AfterUpdate addresses are the same here, so it does not matter
+ // which we use.
+ if (ptNodeArray.mCachedAddressAfterUpdate != offset) {
+ throw new RuntimeException("Wrong address for node " + index
+ + " : expected " + offset + ", got " +
+ ptNodeArray.mCachedAddressAfterUpdate);
+ }
+ ++index;
+ offset += ptNodeArray.mCachedSize;
+ }
+ }
+
+ /**
+ * Helper method to write a children position to a file.
+ *
+ * @param buffer the buffer to write to.
+ * @param index the index in the buffer to write the address to.
+ * @param position the position to write.
+ * @return the size in bytes the address actually took.
+ */
+ /* package */ static int writeChildrenPosition(final byte[] buffer, int index,
+ final int position) {
+ switch (getByteSize(position)) {
+ case 1:
+ buffer[index++] = (byte)position;
+ return 1;
+ case 2:
+ buffer[index++] = (byte)(0xFF & (position >> 8));
+ buffer[index++] = (byte)(0xFF & position);
+ return 2;
+ case 3:
+ buffer[index++] = (byte)(0xFF & (position >> 16));
+ buffer[index++] = (byte)(0xFF & (position >> 8));
+ buffer[index++] = (byte)(0xFF & position);
+ return 3;
+ case 0:
+ return 0;
+ default:
+ throw new RuntimeException("Position " + position + " has a strange size");
+ }
+ }
+
+ /**
+ * Helper method to write a signed children position to a file.
+ *
+ * @param buffer the buffer to write to.
+ * @param index the index in the buffer to write the address to.
+ * @param position the position to write.
+ * @return the size in bytes the address actually took.
+ */
+ /* package */ static int writeSignedChildrenPosition(final byte[] buffer, int index,
+ final int position) {
+ if (!BinaryDictIOUtils.hasChildrenAddress(position)) {
+ buffer[index] = buffer[index + 1] = buffer[index + 2] = 0;
+ } else {
+ final int absPosition = Math.abs(position);
+ buffer[index++] =
+ (byte)((position < 0 ? FormatSpec.MSB8 : 0) | (0xFF & (absPosition >> 16)));
+ buffer[index++] = (byte)(0xFF & (absPosition >> 8));
+ buffer[index++] = (byte)(0xFF & absPosition);
+ }
+ return 3;
+ }
+
+ /**
+ * Makes the flag value for a PtNode.
+ *
+ * @param hasMultipleChars whether the PtNode has multiple chars.
+ * @param isTerminal whether the PtNode is terminal.
+ * @param childrenAddressSize the size of a children address.
+ * @param hasShortcuts whether the PtNode has shortcuts.
+ * @param hasBigrams whether the PtNode has bigrams.
+ * @param isNotAWord whether the PtNode is not a word.
+ * @param isBlackListEntry whether the PtNode is a blacklist entry.
+ * @return the flags
+ */
+ static int makePtNodeFlags(final boolean hasMultipleChars, final boolean isTerminal,
+ final int childrenAddressSize, final boolean hasShortcuts, final boolean hasBigrams,
+ final boolean isNotAWord, final boolean isBlackListEntry) {
+ byte flags = 0;
+ if (hasMultipleChars) flags |= FormatSpec.FLAG_HAS_MULTIPLE_CHARS;
+ if (isTerminal) flags |= FormatSpec.FLAG_IS_TERMINAL;
+ switch (childrenAddressSize) {
+ case 1:
+ flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_ONEBYTE;
+ break;
+ case 2:
+ flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_TWOBYTES;
+ break;
+ case 3:
+ flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_THREEBYTES;
+ break;
+ case 0:
+ flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_NOADDRESS;
+ break;
+ default:
+ throw new RuntimeException("Node with a strange address");
+ }
+ if (hasShortcuts) flags |= FormatSpec.FLAG_HAS_SHORTCUT_TARGETS;
+ if (hasBigrams) flags |= FormatSpec.FLAG_HAS_BIGRAMS;
+ if (isNotAWord) flags |= FormatSpec.FLAG_IS_NOT_A_WORD;
+ if (isBlackListEntry) flags |= FormatSpec.FLAG_IS_BLACKLISTED;
+ return flags;
+ }
+
+ /* package */ static byte makePtNodeFlags(final PtNode node, final int childrenOffset) {
+ return (byte) makePtNodeFlags(node.mChars.length > 1, node.isTerminal(),
+ getByteSize(childrenOffset),
+ node.mShortcutTargets != null && !node.mShortcutTargets.isEmpty(),
+ node.mBigrams != null && !node.mBigrams.isEmpty(),
+ node.mIsNotAWord, node.mIsBlacklistEntry);
+ }
+
+ /**
+ * Makes the flag value for a bigram.
+ *
+ * @param more whether there are more bigrams after this one.
+ * @param offset the offset of the bigram.
+ * @param bigramFrequency the frequency of the bigram, 0..255.
+ * @param unigramFrequency the unigram frequency of the same word, 0..255.
+ * @param word the second bigram, for debugging purposes
+ * @return the flags
+ */
+ /* package */ static final int makeBigramFlags(final boolean more, final int offset,
+ int bigramFrequency, final int unigramFrequency, final String word) {
+ int bigramFlags = (more ? FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_HAS_NEXT : 0)
+ + (offset < 0 ? FormatSpec.FLAG_BIGRAM_ATTR_OFFSET_NEGATIVE : 0);
+ switch (getByteSize(offset)) {
+ case 1:
+ bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_ONEBYTE;
+ break;
+ case 2:
+ bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_TWOBYTES;
+ break;
+ case 3:
+ bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_THREEBYTES;
+ break;
+ default:
+ throw new RuntimeException("Strange offset size");
+ }
+ if (unigramFrequency > bigramFrequency) {
+ MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word
+ + "\". Bigram freq is " + bigramFrequency + ", unigram freq for "
+ + word + " is " + unigramFrequency);
+ bigramFrequency = unigramFrequency;
+ }
+ bigramFlags += getBigramFrequencyDiff(unigramFrequency, bigramFrequency)
+ & FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_FREQUENCY;
+ return bigramFlags;
+ }
+
+ public static int getBigramFrequencyDiff(final int unigramFrequency,
+ final int bigramFrequency) {
+ // We compute the difference between 255 (which means probability = 1) and the
+ // unigram score. We split this into a number of discrete steps.
+ // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15
+ // represents an increase of 16 steps: a value of 15 will be interpreted as the median
+ // value of the 16th step. In all justice, if the bigram frequency is low enough to be
+ // rounded below the first step (which means it is less than half a step higher than the
+ // unigram frequency) then the unigram frequency itself is the best approximation of the
+ // bigram freq that we could possibly supply, hence we should *not* include this bigram
+ // in the file at all.
+ // until this is done, we'll write 0 and slightly overestimate this case.
+ // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step
+ // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to
+ // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the
+ // step size. Then we compute the start of the first step (the one where value 0 starts)
+ // by adding half-a-step to the unigramFrequency. From there, we compute the integer
+ // number of steps to the bigramFrequency. One last thing: we want our steps to include
+ // their lower bound and exclude their higher bound so we need to have the first step
+ // start at exactly 1 unit higher than floor(unigramFreq + half a step).
+ // Note : to reconstruct the score, the dictionary reader will need to divide
+ // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step,
+ // and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best
+ // approximation. (0.5 to get the first step start, and 0.5 to get the middle of the
+ // step pointed by the discretized frequency.
+ final float stepSize =
+ (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
+ / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
+ final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f);
+ final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize);
+ // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1
+ // here. The best approximation would be the unigram freq itself, so we should not
+ // include this bigram in the dictionary. For now, register as 0, and live with the
+ // small over-estimation that we get in this case. TODO: actually remove this bigram
+ // if discretizedFrequency < 0.
+ return discretizedFrequency > 0 ? discretizedFrequency : 0;
+ }
+
+ /**
+ * Makes the flag value for a shortcut.
+ *
+ * @param more whether there are more attributes after this one.
+ * @param frequency the frequency of the attribute, 0..15
+ * @return the flags
+ */
+ static final int makeShortcutFlags(final boolean more, final int frequency) {
+ return (more ? FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_HAS_NEXT : 0)
+ + (frequency & FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_FREQUENCY);
+ }
+
+ /* package */ static final int getChildrenPosition(final PtNode ptNode) {
+ int positionOfChildrenPosField = ptNode.mCachedAddressAfterUpdate
+ + getNodeHeaderSize(ptNode);
+ if (ptNode.isTerminal()) {
+ // A terminal node has the frequency.
+ // If positionOfChildrenPosField is incorrect, we may crash when jumping to the children
+ // position.
+ positionOfChildrenPosField += FormatSpec.PTNODE_FREQUENCY_SIZE;
+ }
+ return null == ptNode.mChildren ? FormatSpec.NO_CHILDREN_ADDRESS
+ : ptNode.mChildren.mCachedAddressAfterUpdate - positionOfChildrenPosField;
+ }
+
+ /**
+ * Write a PtNodeArray. The PtNodeArray is expected to have its final position cached.
+ *
+ * @param dict the dictionary the node array is a part of (for relative offsets).
+ * @param dictEncoder the dictionary encoder.
+ * @param ptNodeArray the node array to write.
+ */
+ @SuppressWarnings("unused")
+ /* package */ static void writePlacedPtNodeArray(final FusionDictionary dict,
+ final DictEncoder dictEncoder, final PtNodeArray ptNodeArray) {
+ // TODO: Make the code in common with BinaryDictIOUtils#writePtNode
+ dictEncoder.setPosition(ptNodeArray.mCachedAddressAfterUpdate);
+
+ final int ptNodeCount = ptNodeArray.mData.size();
+ dictEncoder.writePtNodeCount(ptNodeCount);
+ final int parentPosition =
+ (ptNodeArray.mCachedParentAddress == FormatSpec.NO_PARENT_ADDRESS)
+ ? FormatSpec.NO_PARENT_ADDRESS
+ : ptNodeArray.mCachedParentAddress + ptNodeArray.mCachedAddressAfterUpdate;
+ for (int i = 0; i < ptNodeCount; ++i) {
+ final PtNode ptNode = ptNodeArray.mData.get(i);
+ if (dictEncoder.getPosition() != ptNode.mCachedAddressAfterUpdate) {
+ throw new RuntimeException("Bug: write index is not the same as the cached address "
+ + "of the node : " + dictEncoder.getPosition() + " <> "
+ + ptNode.mCachedAddressAfterUpdate);
+ }
+ // Sanity checks.
+ if (DBG && ptNode.getProbability() > FormatSpec.MAX_TERMINAL_FREQUENCY) {
+ throw new RuntimeException("A node has a frequency > "
+ + FormatSpec.MAX_TERMINAL_FREQUENCY
+ + " : " + ptNode.mProbabilityInfo.toString());
+ }
+ dictEncoder.writePtNode(ptNode, dict);
+ }
+ if (dictEncoder.getPosition() != ptNodeArray.mCachedAddressAfterUpdate
+ + ptNodeArray.mCachedSize) {
+ throw new RuntimeException("Not the same size : written "
+ + (dictEncoder.getPosition() - ptNodeArray.mCachedAddressAfterUpdate)
+ + " bytes from a node that should have " + ptNodeArray.mCachedSize + " bytes");
+ }
+ }
+
+ /**
+ * Dumps a collection of useful statistics about a list of PtNode arrays.
+ *
+ * This prints purely informative stuff, like the total estimated file size, the
+ * number of PtNode arrays, of PtNodes, the repartition of each address size, etc
+ *
+ * @param ptNodeArrays the list of PtNode arrays.
+ */
+ /* package */ static void showStatistics(ArrayList<PtNodeArray> ptNodeArrays) {
+ int firstTerminalAddress = Integer.MAX_VALUE;
+ int lastTerminalAddress = Integer.MIN_VALUE;
+ int size = 0;
+ int ptNodes = 0;
+ int maxNodes = 0;
+ int maxRuns = 0;
+ for (final PtNodeArray ptNodeArray : ptNodeArrays) {
+ if (maxNodes < ptNodeArray.mData.size()) maxNodes = ptNodeArray.mData.size();
+ for (final PtNode ptNode : ptNodeArray.mData) {
+ ++ptNodes;
+ if (ptNode.mChars.length > maxRuns) maxRuns = ptNode.mChars.length;
+ if (ptNode.isTerminal()) {
+ if (ptNodeArray.mCachedAddressAfterUpdate < firstTerminalAddress)
+ firstTerminalAddress = ptNodeArray.mCachedAddressAfterUpdate;
+ if (ptNodeArray.mCachedAddressAfterUpdate > lastTerminalAddress)
+ lastTerminalAddress = ptNodeArray.mCachedAddressAfterUpdate;
+ }
+ }
+ if (ptNodeArray.mCachedAddressAfterUpdate + ptNodeArray.mCachedSize > size) {
+ size = ptNodeArray.mCachedAddressAfterUpdate + ptNodeArray.mCachedSize;
+ }
+ }
+ final int[] ptNodeCounts = new int[maxNodes + 1];
+ final int[] runCounts = new int[maxRuns + 1];
+ for (final PtNodeArray ptNodeArray : ptNodeArrays) {
+ ++ptNodeCounts[ptNodeArray.mData.size()];
+ for (final PtNode ptNode : ptNodeArray.mData) {
+ ++runCounts[ptNode.mChars.length];
+ }
+ }
+
+ MakedictLog.i("Statistics:\n"
+ + " total file size " + size + "\n"
+ + " " + ptNodeArrays.size() + " node arrays\n"
+ + " " + ptNodes + " PtNodes (" + ((float)ptNodes / ptNodeArrays.size())
+ + " PtNodes per node)\n"
+ + " first terminal at " + firstTerminalAddress + "\n"
+ + " last terminal at " + lastTerminalAddress + "\n"
+ + " PtNode stats : max = " + maxNodes);
+ for (int i = 0; i < ptNodeCounts.length; ++i) {
+ MakedictLog.i(" " + i + " : " + ptNodeCounts[i]);
+ }
+ MakedictLog.i(" Character run stats : max = " + maxRuns);
+ for (int i = 0; i < runCounts.length; ++i) {
+ MakedictLog.i(" " + i + " : " + runCounts[i]);
+ }
+ }
+
+ /**
+ * Writes a file header to an output stream.
+ *
+ * @param destination the stream to write the file header to.
+ * @param dict the dictionary to write.
+ * @param formatOptions file format options.
+ * @return the size of the header.
+ */
+ /* package */ static int writeDictionaryHeader(final OutputStream destination,
+ final FusionDictionary dict, final FormatOptions formatOptions)
+ throws IOException, UnsupportedFormatException {
+ final int version = formatOptions.mVersion;
+ if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION
+ || version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) {
+ throw new UnsupportedFormatException("Requested file format version " + version
+ + ", but this implementation only supports versions "
+ + FormatSpec.MINIMUM_SUPPORTED_VERSION + " through "
+ + FormatSpec.MAXIMUM_SUPPORTED_VERSION);
+ }
+
+ ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);
+
+ // The magic number in big-endian order.
+ // Magic number for all versions.
+ headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 24)));
+ headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 16)));
+ headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 8)));
+ headerBuffer.write((byte) (0xFF & FormatSpec.MAGIC_NUMBER));
+ // Dictionary version.
+ headerBuffer.write((byte) (0xFF & (version >> 8)));
+ headerBuffer.write((byte) (0xFF & version));
+
+ // Options flags
+ // TODO: Remove this field.
+ final int options = 0;
+ headerBuffer.write((byte) (0xFF & (options >> 8)));
+ headerBuffer.write((byte) (0xFF & options));
+ final int headerSizeOffset = headerBuffer.size();
+ // Placeholder to be written later with header size.
+ for (int i = 0; i < 4; ++i) {
+ headerBuffer.write(0);
+ }
+ // Write out the options.
+ for (final String key : dict.mOptions.mAttributes.keySet()) {
+ final String value = dict.mOptions.mAttributes.get(key);
+ CharEncoding.writeString(headerBuffer, key);
+ CharEncoding.writeString(headerBuffer, value);
+ }
+ final int size = headerBuffer.size();
+ final byte[] bytes = headerBuffer.toByteArray();
+ // Write out the header size.
+ bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
+ bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
+ bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
+ bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
+ destination.write(bytes);
+
+ headerBuffer.close();
+ return size;
+ }
+}