aboutsummaryrefslogtreecommitdiffstats
path: root/tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java
diff options
context:
space:
mode:
authorAmin Bandali <bandali@kelar.org>2024-12-16 21:45:41 -0500
committerAmin Bandali <bandali@kelar.org>2025-01-11 14:17:35 -0500
commite9a0e66716dab4dd3184d009d8920de1961efdfa (patch)
tree02dcc096643d74645bf28459c2834c3d4a2ad7f2 /tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java
parentfb3b9360d70596d7e921de8bf7d3ca99564a077e (diff)
downloadlatinime-e9a0e66716dab4dd3184d009d8920de1961efdfa.tar.gz
latinime-e9a0e66716dab4dd3184d009d8920de1961efdfa.tar.xz
latinime-e9a0e66716dab4dd3184d009d8920de1961efdfa.zip
Rename to Kelar Keyboard (org.kelar.inputmethod.latin)
Diffstat (limited to 'tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java')
-rw-r--r--tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java839
1 files changed, 0 insertions, 839 deletions
diff --git a/tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java b/tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java
deleted file mode 100644
index 2ae5bf5c1..000000000
--- a/tests/src/com/android/inputmethod/latin/makedict/BinaryDictEncoderUtils.java
+++ /dev/null
@@ -1,839 +0,0 @@
-/*
- * Copyright (C) 2013 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-package com.android.inputmethod.latin.makedict;
-
-import com.android.inputmethod.latin.makedict.BinaryDictDecoderUtils.CharEncoding;
-import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
-import com.android.inputmethod.latin.makedict.FusionDictionary.PtNode;
-import com.android.inputmethod.latin.makedict.FusionDictionary.PtNodeArray;
-
-import java.io.ByteArrayOutputStream;
-import java.io.IOException;
-import java.io.OutputStream;
-import java.util.ArrayList;
-import java.util.HashMap;
-import java.util.Map.Entry;
-
-/**
- * Encodes binary files for a FusionDictionary.
- *
- * All the methods in this class are static.
- *
- * TODO: Rename this class to DictEncoderUtils.
- */
-public class BinaryDictEncoderUtils {
-
- private static final boolean DBG = MakedictLog.DBG;
-
- private BinaryDictEncoderUtils() {
- // This utility class is not publicly instantiable.
- }
-
- // Arbitrary limit to how much passes we consider address size compression should
- // terminate in. At the time of this writing, our largest dictionary completes
- // compression in five passes.
- // If the number of passes exceeds this number, makedict bails with an exception on
- // suspicion that a bug might be causing an infinite loop.
- private static final int MAX_PASSES = 24;
-
- /**
- * Compute the binary size of the character array.
- *
- * If only one character, this is the size of this character. If many, it's the sum of their
- * sizes + 1 byte for the terminator.
- *
- * @param characters the character array
- * @return the size of the char array, including the terminator if any
- */
- static int getPtNodeCharactersSize(final int[] characters,
- final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
- int size = CharEncoding.getCharArraySize(characters, codePointToOneByteCodeMap);
- if (characters.length > 1) size += FormatSpec.PTNODE_TERMINATOR_SIZE;
- return size;
- }
-
- /**
- * Compute the binary size of the character array in a PtNode
- *
- * If only one character, this is the size of this character. If many, it's the sum of their
- * sizes + 1 byte for the terminator.
- *
- * @param ptNode the PtNode
- * @return the size of the char array, including the terminator if any
- */
- private static int getPtNodeCharactersSize(final PtNode ptNode,
- final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
- return getPtNodeCharactersSize(ptNode.mChars, codePointToOneByteCodeMap);
- }
-
- /**
- * Compute the binary size of the PtNode count for a node array.
- * @param nodeArray the nodeArray
- * @return the size of the PtNode count, either 1 or 2 bytes.
- */
- private static int getPtNodeCountSize(final PtNodeArray nodeArray) {
- return BinaryDictIOUtils.getPtNodeCountSize(nodeArray.mData.size());
- }
-
- /**
- * Compute the maximum size of a PtNode, assuming 3-byte addresses for everything.
- *
- * @param ptNode the PtNode to compute the size of.
- * @return the maximum size of the PtNode.
- */
- private static int getPtNodeMaximumSize(final PtNode ptNode,
- final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
- int size = getNodeHeaderSize(ptNode, codePointToOneByteCodeMap);
- if (ptNode.isTerminal()) {
- // If terminal, one byte for the frequency.
- size += FormatSpec.PTNODE_FREQUENCY_SIZE;
- }
- size += FormatSpec.PTNODE_MAX_ADDRESS_SIZE; // For children address
- if (null != ptNode.mBigrams) {
- size += (FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE
- + FormatSpec.PTNODE_ATTRIBUTE_MAX_ADDRESS_SIZE)
- * ptNode.mBigrams.size();
- }
- return size;
- }
-
- /**
- * Compute the maximum size of each PtNode of a PtNode array, assuming 3-byte addresses for
- * everything, and caches it in the `mCachedSize' member of the nodes; deduce the size of
- * the containing node array, and cache it it its 'mCachedSize' member.
- *
- * @param ptNodeArray the node array to compute the maximum size of.
- */
- private static void calculatePtNodeArrayMaximumSize(final PtNodeArray ptNodeArray,
- final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
- int size = getPtNodeCountSize(ptNodeArray);
- for (PtNode node : ptNodeArray.mData) {
- final int nodeSize = getPtNodeMaximumSize(node, codePointToOneByteCodeMap);
- node.mCachedSize = nodeSize;
- size += nodeSize;
- }
- ptNodeArray.mCachedSize = size;
- }
-
- /**
- * Compute the size of the header (flag + [parent address] + characters size) of a PtNode.
- *
- * @param ptNode the PtNode of which to compute the size of the header
- */
- private static int getNodeHeaderSize(final PtNode ptNode,
- final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
- return FormatSpec.PTNODE_FLAGS_SIZE + getPtNodeCharactersSize(ptNode,
- codePointToOneByteCodeMap);
- }
-
- /**
- * Compute the size, in bytes, that an address will occupy.
- *
- * This can be used either for children addresses (which are always positive) or for
- * attribute, which may be positive or negative but
- * store their sign bit separately.
- *
- * @param address the address
- * @return the byte size.
- */
- static int getByteSize(final int address) {
- assert(address <= FormatSpec.UINT24_MAX);
- if (!BinaryDictIOUtils.hasChildrenAddress(address)) {
- return 0;
- } else if (Math.abs(address) <= FormatSpec.UINT8_MAX) {
- return 1;
- } else if (Math.abs(address) <= FormatSpec.UINT16_MAX) {
- return 2;
- } else {
- return 3;
- }
- }
-
- static int writeUIntToBuffer(final byte[] buffer, final int fromPosition, final int value,
- final int size) {
- int position = fromPosition;
- switch(size) {
- case 4:
- buffer[position++] = (byte) ((value >> 24) & 0xFF);
- /* fall through */
- case 3:
- buffer[position++] = (byte) ((value >> 16) & 0xFF);
- /* fall through */
- case 2:
- buffer[position++] = (byte) ((value >> 8) & 0xFF);
- /* fall through */
- case 1:
- buffer[position++] = (byte) (value & 0xFF);
- break;
- default:
- /* nop */
- }
- return position;
- }
-
- static void writeUIntToStream(final OutputStream stream, final int value, final int size)
- throws IOException {
- switch(size) {
- case 4:
- stream.write((value >> 24) & 0xFF);
- /* fall through */
- case 3:
- stream.write((value >> 16) & 0xFF);
- /* fall through */
- case 2:
- stream.write((value >> 8) & 0xFF);
- /* fall through */
- case 1:
- stream.write(value & 0xFF);
- break;
- default:
- /* nop */
- }
- }
-
- // End utility methods
-
- // This method is responsible for finding a nice ordering of the nodes that favors run-time
- // cache performance and dictionary size.
- /* package for tests */ static ArrayList<PtNodeArray> flattenTree(
- final PtNodeArray rootNodeArray) {
- final int treeSize = FusionDictionary.countPtNodes(rootNodeArray);
- MakedictLog.i("Counted nodes : " + treeSize);
- final ArrayList<PtNodeArray> flatTree = new ArrayList<>(treeSize);
- return flattenTreeInner(flatTree, rootNodeArray);
- }
-
- private static ArrayList<PtNodeArray> flattenTreeInner(final ArrayList<PtNodeArray> list,
- final PtNodeArray ptNodeArray) {
- // Removing the node is necessary if the tails are merged, because we would then
- // add the same node several times when we only want it once. A number of places in
- // the code also depends on any node being only once in the list.
- // Merging tails can only be done if there are no attributes. Searching for attributes
- // in LatinIME code depends on a total breadth-first ordering, which merging tails
- // breaks. If there are no attributes, it should be fine (and reduce the file size)
- // to merge tails, and removing the node from the list would be necessary. However,
- // we don't merge tails because breaking the breadth-first ordering would result in
- // extreme overhead at bigram lookup time (it would make the search function O(n) instead
- // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty
- // high).
- // If no nodes are ever merged, we can't have the same node twice in the list, hence
- // searching for duplicates in unnecessary. It is also very performance consuming,
- // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making
- // this simple list.remove operation O(n*n) overall. On Android this overhead is very
- // high.
- // For future reference, the code to remove duplicate is a simple : list.remove(node);
- list.add(ptNodeArray);
- final ArrayList<PtNode> branches = ptNodeArray.mData;
- for (PtNode ptNode : branches) {
- if (null != ptNode.mChildren) flattenTreeInner(list, ptNode.mChildren);
- }
- return list;
- }
-
- /**
- * Get the offset from a position inside a current node array to a target node array, during
- * update.
- *
- * If the current node array is before the target node array, the target node array has not
- * been updated yet, so we should return the offset from the old position of the current node
- * array to the old position of the target node array. If on the other hand the target is
- * before the current node array, it already has been updated, so we should return the offset
- * from the new position in the current node array to the new position in the target node
- * array.
- *
- * @param currentNodeArray node array containing the PtNode where the offset will be written
- * @param offsetFromStartOfCurrentNodeArray offset, in bytes, from the start of currentNodeArray
- * @param targetNodeArray the target node array to get the offset to
- * @return the offset to the target node array
- */
- private static int getOffsetToTargetNodeArrayDuringUpdate(final PtNodeArray currentNodeArray,
- final int offsetFromStartOfCurrentNodeArray, final PtNodeArray targetNodeArray) {
- final boolean isTargetBeforeCurrent = (targetNodeArray.mCachedAddressBeforeUpdate
- < currentNodeArray.mCachedAddressBeforeUpdate);
- if (isTargetBeforeCurrent) {
- return targetNodeArray.mCachedAddressAfterUpdate
- - (currentNodeArray.mCachedAddressAfterUpdate
- + offsetFromStartOfCurrentNodeArray);
- }
- return targetNodeArray.mCachedAddressBeforeUpdate
- - (currentNodeArray.mCachedAddressBeforeUpdate + offsetFromStartOfCurrentNodeArray);
- }
-
- /**
- * Get the offset from a position inside a current node array to a target PtNode, during
- * update.
- *
- * @param currentNodeArray node array containing the PtNode where the offset will be written
- * @param offsetFromStartOfCurrentNodeArray offset, in bytes, from the start of currentNodeArray
- * @param targetPtNode the target PtNode to get the offset to
- * @return the offset to the target PtNode
- */
- // TODO: is there any way to factorize this method with the one above?
- private static int getOffsetToTargetPtNodeDuringUpdate(final PtNodeArray currentNodeArray,
- final int offsetFromStartOfCurrentNodeArray, final PtNode targetPtNode) {
- final int oldOffsetBasePoint = currentNodeArray.mCachedAddressBeforeUpdate
- + offsetFromStartOfCurrentNodeArray;
- final boolean isTargetBeforeCurrent = (targetPtNode.mCachedAddressBeforeUpdate
- < oldOffsetBasePoint);
- // If the target is before the current node array, then its address has already been
- // updated. We can use the AfterUpdate member, and compare it to our own member after
- // update. Otherwise, the AfterUpdate member is not updated yet, so we need to use the
- // BeforeUpdate member, and of course we have to compare this to our own address before
- // update.
- if (isTargetBeforeCurrent) {
- final int newOffsetBasePoint = currentNodeArray.mCachedAddressAfterUpdate
- + offsetFromStartOfCurrentNodeArray;
- return targetPtNode.mCachedAddressAfterUpdate - newOffsetBasePoint;
- }
- return targetPtNode.mCachedAddressBeforeUpdate - oldOffsetBasePoint;
- }
-
- /**
- * Computes the actual node array size, based on the cached addresses of the children nodes.
- *
- * Each node array stores its tentative address. During dictionary address computing, these
- * are not final, but they can be used to compute the node array size (the node array size
- * depends on the address of the children because the number of bytes necessary to store an
- * address depends on its numeric value. The return value indicates whether the node array
- * contents (as in, any of the addresses stored in the cache fields) have changed with
- * respect to their previous value.
- *
- * @param ptNodeArray the node array to compute the size of.
- * @param dict the dictionary in which the word/attributes are to be found.
- * @return false if none of the cached addresses inside the node array changed, true otherwise.
- */
- private static boolean computeActualPtNodeArraySize(final PtNodeArray ptNodeArray,
- final FusionDictionary dict,
- final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
- boolean changed = false;
- int size = getPtNodeCountSize(ptNodeArray);
- for (PtNode ptNode : ptNodeArray.mData) {
- ptNode.mCachedAddressAfterUpdate = ptNodeArray.mCachedAddressAfterUpdate + size;
- if (ptNode.mCachedAddressAfterUpdate != ptNode.mCachedAddressBeforeUpdate) {
- changed = true;
- }
- int nodeSize = getNodeHeaderSize(ptNode, codePointToOneByteCodeMap);
- if (ptNode.isTerminal()) {
- nodeSize += FormatSpec.PTNODE_FREQUENCY_SIZE;
- }
- if (null != ptNode.mChildren) {
- nodeSize += getByteSize(getOffsetToTargetNodeArrayDuringUpdate(ptNodeArray,
- nodeSize + size, ptNode.mChildren));
- }
- if (null != ptNode.mBigrams) {
- for (WeightedString bigram : ptNode.mBigrams) {
- final int offset = getOffsetToTargetPtNodeDuringUpdate(ptNodeArray,
- nodeSize + size + FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE,
- FusionDictionary.findWordInTree(dict.mRootNodeArray, bigram.mWord));
- nodeSize += getByteSize(offset) + FormatSpec.PTNODE_ATTRIBUTE_FLAGS_SIZE;
- }
- }
- ptNode.mCachedSize = nodeSize;
- size += nodeSize;
- }
- if (ptNodeArray.mCachedSize != size) {
- ptNodeArray.mCachedSize = size;
- changed = true;
- }
- return changed;
- }
-
- /**
- * Initializes the cached addresses of node arrays and their containing nodes from their size.
- *
- * @param flatNodes the list of node arrays.
- * @return the byte size of the entire stack.
- */
- private static int initializePtNodeArraysCachedAddresses(
- final ArrayList<PtNodeArray> flatNodes) {
- int nodeArrayOffset = 0;
- for (final PtNodeArray nodeArray : flatNodes) {
- nodeArray.mCachedAddressBeforeUpdate = nodeArrayOffset;
- int nodeCountSize = getPtNodeCountSize(nodeArray);
- int nodeffset = 0;
- for (final PtNode ptNode : nodeArray.mData) {
- ptNode.mCachedAddressBeforeUpdate = ptNode.mCachedAddressAfterUpdate =
- nodeCountSize + nodeArrayOffset + nodeffset;
- nodeffset += ptNode.mCachedSize;
- }
- nodeArrayOffset += nodeArray.mCachedSize;
- }
- return nodeArrayOffset;
- }
-
- /**
- * Updates the cached addresses of node arrays after recomputing their new positions.
- *
- * @param flatNodes the list of node arrays.
- */
- private static void updatePtNodeArraysCachedAddresses(final ArrayList<PtNodeArray> flatNodes) {
- for (final PtNodeArray nodeArray : flatNodes) {
- nodeArray.mCachedAddressBeforeUpdate = nodeArray.mCachedAddressAfterUpdate;
- for (final PtNode ptNode : nodeArray.mData) {
- ptNode.mCachedAddressBeforeUpdate = ptNode.mCachedAddressAfterUpdate;
- }
- }
- }
-
- /**
- * Compute the addresses and sizes of an ordered list of PtNode arrays.
- *
- * This method takes a list of PtNode arrays and will update their cached address and size
- * values so that they can be written into a file. It determines the smallest size each of the
- * PtNode arrays can be given the addresses of its children and attributes, and store that into
- * each PtNode.
- * The order of the PtNode is given by the order of the array. This method makes no effort
- * to find a good order; it only mechanically computes the size this order results in.
- *
- * @param dict the dictionary
- * @param flatNodes the ordered list of PtNode arrays
- * @return the same array it was passed. The nodes have been updated for address and size.
- */
- /* package */ static ArrayList<PtNodeArray> computeAddresses(final FusionDictionary dict,
- final ArrayList<PtNodeArray> flatNodes,
- final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
- // First get the worst possible sizes and offsets
- for (final PtNodeArray n : flatNodes) {
- calculatePtNodeArrayMaximumSize(n, codePointToOneByteCodeMap);
- }
- final int offset = initializePtNodeArraysCachedAddresses(flatNodes);
-
- MakedictLog.i("Compressing the array addresses. Original size : " + offset);
- MakedictLog.i("(Recursively seen size : " + offset + ")");
-
- int passes = 0;
- boolean changesDone = false;
- do {
- changesDone = false;
- int ptNodeArrayStartOffset = 0;
- for (final PtNodeArray ptNodeArray : flatNodes) {
- ptNodeArray.mCachedAddressAfterUpdate = ptNodeArrayStartOffset;
- final int oldNodeArraySize = ptNodeArray.mCachedSize;
- final boolean changed = computeActualPtNodeArraySize(ptNodeArray, dict,
- codePointToOneByteCodeMap);
- final int newNodeArraySize = ptNodeArray.mCachedSize;
- if (oldNodeArraySize < newNodeArraySize) {
- throw new RuntimeException("Increased size ?!");
- }
- ptNodeArrayStartOffset += newNodeArraySize;
- changesDone |= changed;
- }
- updatePtNodeArraysCachedAddresses(flatNodes);
- ++passes;
- if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
- } while (changesDone);
-
- final PtNodeArray lastPtNodeArray = flatNodes.get(flatNodes.size() - 1);
- MakedictLog.i("Compression complete in " + passes + " passes.");
- MakedictLog.i("After address compression : "
- + (lastPtNodeArray.mCachedAddressAfterUpdate + lastPtNodeArray.mCachedSize));
-
- return flatNodes;
- }
-
- /**
- * Validity-checking method.
- *
- * This method checks a list of PtNode arrays for juxtaposition, that is, it will do
- * nothing if each node array's cached address is actually the previous node array's address
- * plus the previous node's size.
- * If this is not the case, it will throw an exception.
- *
- * @param arrays the list of node arrays to check
- */
- /* package */ static void checkFlatPtNodeArrayList(final ArrayList<PtNodeArray> arrays) {
- int offset = 0;
- int index = 0;
- for (final PtNodeArray ptNodeArray : arrays) {
- // BeforeUpdate and AfterUpdate addresses are the same here, so it does not matter
- // which we use.
- if (ptNodeArray.mCachedAddressAfterUpdate != offset) {
- throw new RuntimeException("Wrong address for node " + index
- + " : expected " + offset + ", got " +
- ptNodeArray.mCachedAddressAfterUpdate);
- }
- ++index;
- offset += ptNodeArray.mCachedSize;
- }
- }
-
- /**
- * Helper method to write a children position to a file.
- *
- * @param buffer the buffer to write to.
- * @param fromIndex the index in the buffer to write the address to.
- * @param position the position to write.
- * @return the size in bytes the address actually took.
- */
- /* package */ static int writeChildrenPosition(final byte[] buffer, final int fromIndex,
- final int position) {
- int index = fromIndex;
- switch (getByteSize(position)) {
- case 1:
- buffer[index++] = (byte)position;
- return 1;
- case 2:
- buffer[index++] = (byte)(0xFF & (position >> 8));
- buffer[index++] = (byte)(0xFF & position);
- return 2;
- case 3:
- buffer[index++] = (byte)(0xFF & (position >> 16));
- buffer[index++] = (byte)(0xFF & (position >> 8));
- buffer[index++] = (byte)(0xFF & position);
- return 3;
- case 0:
- return 0;
- default:
- throw new RuntimeException("Position " + position + " has a strange size");
- }
- }
-
- /**
- * Makes the flag value for a PtNode.
- *
- * @param hasMultipleChars whether the PtNode has multiple chars.
- * @param isTerminal whether the PtNode is terminal.
- * @param childrenAddressSize the size of a children address.
- * @param hasBigrams whether the PtNode has bigrams.
- * @param isNotAWord whether the PtNode is not a word.
- * @param isPossiblyOffensive whether the PtNode is a possibly offensive entry.
- * @return the flags
- */
- static int makePtNodeFlags(final boolean hasMultipleChars, final boolean isTerminal,
- final int childrenAddressSize, final boolean hasBigrams,
- final boolean isNotAWord, final boolean isPossiblyOffensive) {
- byte flags = 0;
- if (hasMultipleChars) flags |= FormatSpec.FLAG_HAS_MULTIPLE_CHARS;
- if (isTerminal) flags |= FormatSpec.FLAG_IS_TERMINAL;
- switch (childrenAddressSize) {
- case 1:
- flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_ONEBYTE;
- break;
- case 2:
- flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_TWOBYTES;
- break;
- case 3:
- flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_THREEBYTES;
- break;
- case 0:
- flags |= FormatSpec.FLAG_CHILDREN_ADDRESS_TYPE_NOADDRESS;
- break;
- default:
- throw new RuntimeException("Node with a strange address");
- }
- if (hasBigrams) flags |= FormatSpec.FLAG_HAS_BIGRAMS;
- if (isNotAWord) flags |= FormatSpec.FLAG_IS_NOT_A_WORD;
- if (isPossiblyOffensive) flags |= FormatSpec.FLAG_IS_POSSIBLY_OFFENSIVE;
- return flags;
- }
-
- /* package */ static byte makePtNodeFlags(final PtNode node, final int childrenOffset) {
- return (byte) makePtNodeFlags(node.mChars.length > 1, node.isTerminal(),
- getByteSize(childrenOffset),
- node.mBigrams != null && !node.mBigrams.isEmpty(),
- node.mIsNotAWord, node.mIsPossiblyOffensive);
- }
-
- /**
- * Makes the flag value for a bigram.
- *
- * @param more whether there are more bigrams after this one.
- * @param offset the offset of the bigram.
- * @param bigramFrequency the frequency of the bigram, 0..255.
- * @param unigramFrequency the unigram frequency of the same word, 0..255.
- * @param word the second bigram, for debugging purposes
- * @return the flags
- */
- /* package */ static int makeBigramFlags(final boolean more, final int offset,
- final int bigramFrequency, final int unigramFrequency, final String word) {
- int bigramFlags = (more ? FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_HAS_NEXT : 0)
- + (offset < 0 ? FormatSpec.FLAG_BIGRAM_ATTR_OFFSET_NEGATIVE : 0);
- switch (getByteSize(offset)) {
- case 1:
- bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_ONEBYTE;
- break;
- case 2:
- bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_TWOBYTES;
- break;
- case 3:
- bigramFlags |= FormatSpec.FLAG_BIGRAM_ATTR_ADDRESS_TYPE_THREEBYTES;
- break;
- default:
- throw new RuntimeException("Strange offset size");
- }
- final int frequency;
- if (unigramFrequency > bigramFrequency) {
- MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word
- + "\". Bigram freq is " + bigramFrequency + ", unigram freq for "
- + word + " is " + unigramFrequency);
- frequency = unigramFrequency;
- } else {
- frequency = bigramFrequency;
- }
- bigramFlags += getBigramFrequencyDiff(unigramFrequency, frequency)
- & FormatSpec.FLAG_BIGRAM_SHORTCUT_ATTR_FREQUENCY;
- return bigramFlags;
- }
-
- public static int getBigramFrequencyDiff(final int unigramFrequency,
- final int bigramFrequency) {
- // We compute the difference between 255 (which means probability = 1) and the
- // unigram score. We split this into a number of discrete steps.
- // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15
- // represents an increase of 16 steps: a value of 15 will be interpreted as the median
- // value of the 16th step. In all justice, if the bigram frequency is low enough to be
- // rounded below the first step (which means it is less than half a step higher than the
- // unigram frequency) then the unigram frequency itself is the best approximation of the
- // bigram freq that we could possibly supply, hence we should *not* include this bigram
- // in the file at all.
- // until this is done, we'll write 0 and slightly overestimate this case.
- // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step
- // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to
- // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the
- // step size. Then we compute the start of the first step (the one where value 0 starts)
- // by adding half-a-step to the unigramFrequency. From there, we compute the integer
- // number of steps to the bigramFrequency. One last thing: we want our steps to include
- // their lower bound and exclude their higher bound so we need to have the first step
- // start at exactly 1 unit higher than floor(unigramFreq + half a step).
- // Note : to reconstruct the score, the dictionary reader will need to divide
- // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step,
- // and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best
- // approximation. (0.5 to get the first step start, and 0.5 to get the middle of the
- // step pointed by the discretized frequency.
- final float stepSize =
- (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
- / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
- final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f);
- final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize);
- // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1
- // here. The best approximation would be the unigram freq itself, so we should not
- // include this bigram in the dictionary. For now, register as 0, and live with the
- // small over-estimation that we get in this case. TODO: actually remove this bigram
- // if discretizedFrequency < 0.
- return discretizedFrequency > 0 ? discretizedFrequency : 0;
- }
-
- /* package */ static int getChildrenPosition(final PtNode ptNode,
- final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
- int positionOfChildrenPosField = ptNode.mCachedAddressAfterUpdate
- + getNodeHeaderSize(ptNode, codePointToOneByteCodeMap);
- if (ptNode.isTerminal()) {
- // A terminal node has the frequency.
- // If positionOfChildrenPosField is incorrect, we may crash when jumping to the children
- // position.
- positionOfChildrenPosField += FormatSpec.PTNODE_FREQUENCY_SIZE;
- }
- return null == ptNode.mChildren ? FormatSpec.NO_CHILDREN_ADDRESS
- : ptNode.mChildren.mCachedAddressAfterUpdate - positionOfChildrenPosField;
- }
-
- /**
- * Write a PtNodeArray. The PtNodeArray is expected to have its final position cached.
- *
- * @param dict the dictionary the node array is a part of (for relative offsets).
- * @param dictEncoder the dictionary encoder.
- * @param ptNodeArray the node array to write.
- * @param codePointToOneByteCodeMap the map to convert the code points.
- */
- /* package */ static void writePlacedPtNodeArray(final FusionDictionary dict,
- final DictEncoder dictEncoder, final PtNodeArray ptNodeArray,
- final HashMap<Integer, Integer> codePointToOneByteCodeMap) {
- // TODO: Make the code in common with BinaryDictIOUtils#writePtNode
- dictEncoder.setPosition(ptNodeArray.mCachedAddressAfterUpdate);
-
- final int ptNodeCount = ptNodeArray.mData.size();
- dictEncoder.writePtNodeCount(ptNodeCount);
- for (int i = 0; i < ptNodeCount; ++i) {
- final PtNode ptNode = ptNodeArray.mData.get(i);
- if (dictEncoder.getPosition() != ptNode.mCachedAddressAfterUpdate) {
- throw new RuntimeException("Bug: write index is not the same as the cached address "
- + "of the node : " + dictEncoder.getPosition() + " <> "
- + ptNode.mCachedAddressAfterUpdate);
- }
- // Validity checks.
- if (DBG && ptNode.getProbability() > FormatSpec.MAX_TERMINAL_FREQUENCY) {
- throw new RuntimeException("A node has a frequency > "
- + FormatSpec.MAX_TERMINAL_FREQUENCY
- + " : " + ptNode.mProbabilityInfo.toString());
- }
- dictEncoder.writePtNode(ptNode, dict, codePointToOneByteCodeMap);
- }
- if (dictEncoder.getPosition() != ptNodeArray.mCachedAddressAfterUpdate
- + ptNodeArray.mCachedSize) {
- throw new RuntimeException("Not the same size : written "
- + (dictEncoder.getPosition() - ptNodeArray.mCachedAddressAfterUpdate)
- + " bytes from a node that should have " + ptNodeArray.mCachedSize + " bytes");
- }
- }
-
- /**
- * Dumps a collection of useful statistics about a list of PtNode arrays.
- *
- * This prints purely informative stuff, like the total estimated file size, the
- * number of PtNode arrays, of PtNodes, the repartition of each address size, etc
- *
- * @param ptNodeArrays the list of PtNode arrays.
- */
- /* package */ static void showStatistics(ArrayList<PtNodeArray> ptNodeArrays) {
- int firstTerminalAddress = Integer.MAX_VALUE;
- int lastTerminalAddress = Integer.MIN_VALUE;
- int size = 0;
- int ptNodes = 0;
- int maxNodes = 0;
- int maxRuns = 0;
- for (final PtNodeArray ptNodeArray : ptNodeArrays) {
- if (maxNodes < ptNodeArray.mData.size()) maxNodes = ptNodeArray.mData.size();
- for (final PtNode ptNode : ptNodeArray.mData) {
- ++ptNodes;
- if (ptNode.mChars.length > maxRuns) maxRuns = ptNode.mChars.length;
- if (ptNode.isTerminal()) {
- if (ptNodeArray.mCachedAddressAfterUpdate < firstTerminalAddress)
- firstTerminalAddress = ptNodeArray.mCachedAddressAfterUpdate;
- if (ptNodeArray.mCachedAddressAfterUpdate > lastTerminalAddress)
- lastTerminalAddress = ptNodeArray.mCachedAddressAfterUpdate;
- }
- }
- if (ptNodeArray.mCachedAddressAfterUpdate + ptNodeArray.mCachedSize > size) {
- size = ptNodeArray.mCachedAddressAfterUpdate + ptNodeArray.mCachedSize;
- }
- }
- final int[] ptNodeCounts = new int[maxNodes + 1];
- final int[] runCounts = new int[maxRuns + 1];
- for (final PtNodeArray ptNodeArray : ptNodeArrays) {
- ++ptNodeCounts[ptNodeArray.mData.size()];
- for (final PtNode ptNode : ptNodeArray.mData) {
- ++runCounts[ptNode.mChars.length];
- }
- }
-
- MakedictLog.i("Statistics:\n"
- + " Total file size " + size + "\n"
- + " " + ptNodeArrays.size() + " node arrays\n"
- + " " + ptNodes + " PtNodes (" + ((float)ptNodes / ptNodeArrays.size())
- + " PtNodes per node)\n"
- + " First terminal at " + firstTerminalAddress + "\n"
- + " Last terminal at " + lastTerminalAddress + "\n"
- + " PtNode stats : max = " + maxNodes);
- }
-
- /**
- * Writes a file header to an output stream.
- *
- * @param destination the stream to write the file header to.
- * @param dict the dictionary to write.
- * @param formatOptions file format options.
- * @param codePointOccurrenceArray code points ordered by occurrence count.
- * @return the size of the header.
- */
- /* package */ static int writeDictionaryHeader(final OutputStream destination,
- final FusionDictionary dict, final FormatOptions formatOptions,
- final ArrayList<Entry<Integer, Integer>> codePointOccurrenceArray)
- throws IOException, UnsupportedFormatException {
- final int version = formatOptions.mVersion;
- if ((version >= FormatSpec.MINIMUM_SUPPORTED_STATIC_VERSION &&
- version <= FormatSpec.MAXIMUM_SUPPORTED_STATIC_VERSION) || (
- version >= FormatSpec.MINIMUM_SUPPORTED_DYNAMIC_VERSION &&
- version <= FormatSpec.MAXIMUM_SUPPORTED_DYNAMIC_VERSION)) {
- // Dictionary is valid
- } else {
- throw new UnsupportedFormatException("Requested file format version " + version
- + ", but this implementation only supports static versions "
- + FormatSpec.MINIMUM_SUPPORTED_STATIC_VERSION + " through "
- + FormatSpec.MAXIMUM_SUPPORTED_STATIC_VERSION + " and dynamic versions "
- + FormatSpec.MINIMUM_SUPPORTED_DYNAMIC_VERSION + " through "
- + FormatSpec.MAXIMUM_SUPPORTED_DYNAMIC_VERSION);
- }
-
- ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);
-
- // The magic number in big-endian order.
- // Magic number for all versions.
- headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 24)));
- headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 16)));
- headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 8)));
- headerBuffer.write((byte) (0xFF & FormatSpec.MAGIC_NUMBER));
- // Dictionary version.
- headerBuffer.write((byte) (0xFF & (version >> 8)));
- headerBuffer.write((byte) (0xFF & version));
-
- // Options flags
- // TODO: Remove this field.
- final int options = 0;
- headerBuffer.write((byte) (0xFF & (options >> 8)));
- headerBuffer.write((byte) (0xFF & options));
- final int headerSizeOffset = headerBuffer.size();
- // Placeholder to be written later with header size.
- for (int i = 0; i < 4; ++i) {
- headerBuffer.write(0);
- }
- // Write out the options.
- for (final String key : dict.mOptions.mAttributes.keySet()) {
- final String value = dict.mOptions.mAttributes.get(key);
- CharEncoding.writeString(headerBuffer, key, null);
- CharEncoding.writeString(headerBuffer, value, null);
- }
- // Write out the codePointTable if there is codePointOccurrenceArray.
- if (codePointOccurrenceArray != null) {
- final String codePointTableString =
- encodeCodePointTable(codePointOccurrenceArray);
- CharEncoding.writeString(headerBuffer, DictionaryHeader.CODE_POINT_TABLE_KEY, null);
- CharEncoding.writeString(headerBuffer, codePointTableString, null);
- }
- final int size = headerBuffer.size();
- final byte[] bytes = headerBuffer.toByteArray();
- // Write out the header size.
- bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
- bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
- bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
- bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
- destination.write(bytes);
-
- headerBuffer.close();
- return size;
- }
-
- static final class CodePointTable {
- final HashMap<Integer, Integer> mCodePointToOneByteCodeMap;
- final ArrayList<Entry<Integer, Integer>> mCodePointOccurrenceArray;
-
- // Let code point table empty for version 200 dictionary which used in test
- CodePointTable() {
- mCodePointToOneByteCodeMap = null;
- mCodePointOccurrenceArray = null;
- }
-
- CodePointTable(final HashMap<Integer, Integer> codePointToOneByteCodeMap,
- final ArrayList<Entry<Integer, Integer>> codePointOccurrenceArray) {
- mCodePointToOneByteCodeMap = codePointToOneByteCodeMap;
- mCodePointOccurrenceArray = codePointOccurrenceArray;
- }
- }
-
- private static String encodeCodePointTable(
- final ArrayList<Entry<Integer, Integer>> codePointOccurrenceArray) {
- final StringBuilder codePointTableString = new StringBuilder();
- int currentCodePointTableIndex = FormatSpec.MINIMAL_ONE_BYTE_CHARACTER_VALUE;
- for (final Entry<Integer, Integer> entry : codePointOccurrenceArray) {
- // Native reads the table as a string
- codePointTableString.appendCodePoint(entry.getKey());
- if (FormatSpec.MAXIMAL_ONE_BYTE_CHARACTER_VALUE < ++currentCodePointTableIndex) {
- break;
- }
- }
- return codePointTableString.toString();
- }
-}