aboutsummaryrefslogtreecommitdiffstats
path: root/java/src/com/android/inputmethod/latin/Utils.java
diff options
context:
space:
mode:
Diffstat (limited to 'java/src/com/android/inputmethod/latin/Utils.java')
-rw-r--r--java/src/com/android/inputmethod/latin/Utils.java21
1 files changed, 15 insertions, 6 deletions
diff --git a/java/src/com/android/inputmethod/latin/Utils.java b/java/src/com/android/inputmethod/latin/Utils.java
index 7091d9b56..149c5ca9e 100644
--- a/java/src/com/android/inputmethod/latin/Utils.java
+++ b/java/src/com/android/inputmethod/latin/Utils.java
@@ -285,13 +285,22 @@ public class Utils {
// (the number of matched characters between typed word and suggested word))
// * (individual word's score which defined in the unigram dictionary,
// and this score is defined in range [0, 255].)
- // * (when before.length() == after.length(),
- // mFullWordMultiplier (this is defined 2))
- // So, maximum original score is pow(2, before.length()) * 255 * 2
- // So, we can normalize original score by dividing this value.
+ // Then, the following processing is applied.
+ // - If the dictionary word is matched up to the point of the user entry
+ // (full match up to min(before.length(), after.length())
+ // => Then multiply by FULL_MATCHED_WORDS_PROMOTION_RATE (this is defined 1.2)
+ // - If the word is a true full match except for differences in accents or
+ // capitalization, then treat it as if the frequency was 255.
+ // - If before.length() == after.length()
+ // => multiply by mFullWordMultiplier (this is defined 2))
+ // So, maximum original score is pow(2, min(before.length(), after.length())) * 255 * 2 * 1.2
+ // For historical reasons we ignore the 1.2 modifier (because the measure for a good
+ // autocorrection threshold was done at a time when it didn't exist). This doesn't change
+ // the result.
+ // So, we can normalize original score by dividing pow(2, min(b.l(),a.l())) * 255 * 2.
private static final int MAX_INITIAL_SCORE = 255;
private static final int TYPED_LETTER_MULTIPLIER = 2;
- private static final int FULL_WORD_MULTIPLYER = 2;
+ private static final int FULL_WORD_MULTIPLIER = 2;
public static double calcNormalizedScore(CharSequence before, CharSequence after, int score) {
final int beforeLength = before.length();
final int afterLength = after.length();
@@ -301,7 +310,7 @@ public class Utils {
// correction.
final double maximumScore = MAX_INITIAL_SCORE
* Math.pow(TYPED_LETTER_MULTIPLIER, Math.min(beforeLength, afterLength))
- * FULL_WORD_MULTIPLYER;
+ * FULL_WORD_MULTIPLIER;
// add a weight based on edit distance.
// distance <= max(afterLength, beforeLength) == afterLength,
// so, 0 <= distance / afterLength <= 1