aboutsummaryrefslogtreecommitdiffstats
path: root/java/src/com/android/inputmethod/latin/makedict/BinaryDictEncoder.java
diff options
context:
space:
mode:
Diffstat (limited to 'java/src/com/android/inputmethod/latin/makedict/BinaryDictEncoder.java')
-rw-r--r--java/src/com/android/inputmethod/latin/makedict/BinaryDictEncoder.java993
1 files changed, 993 insertions, 0 deletions
diff --git a/java/src/com/android/inputmethod/latin/makedict/BinaryDictEncoder.java b/java/src/com/android/inputmethod/latin/makedict/BinaryDictEncoder.java
new file mode 100644
index 000000000..85219e485
--- /dev/null
+++ b/java/src/com/android/inputmethod/latin/makedict/BinaryDictEncoder.java
@@ -0,0 +1,993 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package com.android.inputmethod.latin.makedict;
+
+import com.android.inputmethod.latin.makedict.BinaryDictDecoder.CharEncoding;
+import com.android.inputmethod.latin.makedict.FormatSpec.FormatOptions;
+import com.android.inputmethod.latin.makedict.FusionDictionary.CharGroup;
+import com.android.inputmethod.latin.makedict.FusionDictionary.DictionaryOptions;
+import com.android.inputmethod.latin.makedict.FusionDictionary.Node;
+import com.android.inputmethod.latin.makedict.FusionDictionary.WeightedString;
+
+import java.io.ByteArrayOutputStream;
+import java.io.IOException;
+import java.io.OutputStream;
+import java.util.ArrayList;
+import java.util.Iterator;
+
+/**
+ * Encodes binary files for a FusionDictionary.
+ *
+ * All the methods in this class are static.
+ */
+public class BinaryDictEncoder {
+
+ private static final boolean DBG = MakedictLog.DBG;
+
+ private BinaryDictEncoder() {
+ // This utility class is not publicly instantiable.
+ }
+
+ // Arbitrary limit to how much passes we consider address size compression should
+ // terminate in. At the time of this writing, our largest dictionary completes
+ // compression in five passes.
+ // If the number of passes exceeds this number, makedict bails with an exception on
+ // suspicion that a bug might be causing an infinite loop.
+ private static final int MAX_PASSES = 24;
+
+ /**
+ * Compute the binary size of the character array.
+ *
+ * If only one character, this is the size of this character. If many, it's the sum of their
+ * sizes + 1 byte for the terminator.
+ *
+ * @param characters the character array
+ * @return the size of the char array, including the terminator if any
+ */
+ static int getGroupCharactersSize(final int[] characters) {
+ int size = CharEncoding.getCharArraySize(characters);
+ if (characters.length > 1) size += FormatSpec.GROUP_TERMINATOR_SIZE;
+ return size;
+ }
+
+ /**
+ * Compute the binary size of the character array in a group
+ *
+ * If only one character, this is the size of this character. If many, it's the sum of their
+ * sizes + 1 byte for the terminator.
+ *
+ * @param group the group
+ * @return the size of the char array, including the terminator if any
+ */
+ private static int getGroupCharactersSize(final CharGroup group) {
+ return getGroupCharactersSize(group.mChars);
+ }
+
+ /**
+ * Compute the binary size of the group count for a node
+ * @param node the node
+ * @return the size of the group count, either 1 or 2 bytes.
+ */
+ private static int getGroupCountSize(final Node node) {
+ return BinaryDictIOUtils.getGroupCountSize(node.mData.size());
+ }
+
+ /**
+ * Compute the size of a shortcut in bytes.
+ */
+ private static int getShortcutSize(final WeightedString shortcut) {
+ int size = FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE;
+ final String word = shortcut.mWord;
+ final int length = word.length();
+ for (int i = 0; i < length; i = word.offsetByCodePoints(i, 1)) {
+ final int codePoint = word.codePointAt(i);
+ size += CharEncoding.getCharSize(codePoint);
+ }
+ size += FormatSpec.GROUP_TERMINATOR_SIZE;
+ return size;
+ }
+
+ /**
+ * Compute the size of a shortcut list in bytes.
+ *
+ * This is known in advance and does not change according to position in the file
+ * like address lists do.
+ */
+ static int getShortcutListSize(final ArrayList<WeightedString> shortcutList) {
+ if (null == shortcutList) return 0;
+ int size = FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
+ for (final WeightedString shortcut : shortcutList) {
+ size += getShortcutSize(shortcut);
+ }
+ return size;
+ }
+
+ /**
+ * Compute the maximum size of a CharGroup, assuming 3-byte addresses for everything.
+ *
+ * @param group the CharGroup to compute the size of.
+ * @param options file format options.
+ * @return the maximum size of the group.
+ */
+ private static int getCharGroupMaximumSize(final CharGroup group, final FormatOptions options) {
+ int size = getGroupHeaderSize(group, options);
+ // If terminal, one byte for the frequency
+ if (group.isTerminal()) size += FormatSpec.GROUP_FREQUENCY_SIZE;
+ size += FormatSpec.GROUP_MAX_ADDRESS_SIZE; // For children address
+ size += getShortcutListSize(group.mShortcutTargets);
+ if (null != group.mBigrams) {
+ size += (FormatSpec.GROUP_ATTRIBUTE_FLAGS_SIZE
+ + FormatSpec.GROUP_ATTRIBUTE_MAX_ADDRESS_SIZE)
+ * group.mBigrams.size();
+ }
+ return size;
+ }
+
+ /**
+ * Compute the maximum size of a node, assuming 3-byte addresses for everything, and caches
+ * it in the 'actualSize' member of the node.
+ *
+ * @param node the node to compute the maximum size of.
+ * @param options file format options.
+ */
+ private static void calculateNodeMaximumSize(final Node node, final FormatOptions options) {
+ int size = getGroupCountSize(node);
+ for (CharGroup g : node.mData) {
+ final int groupSize = getCharGroupMaximumSize(g, options);
+ g.mCachedSize = groupSize;
+ size += groupSize;
+ }
+ if (options.mSupportsDynamicUpdate) {
+ size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
+ }
+ node.mCachedSize = size;
+ }
+
+ /**
+ * Compute the size of the header (flag + [parent address] + characters size) of a CharGroup.
+ *
+ * @param group the group of which to compute the size of the header
+ * @param options file format options.
+ */
+ private static int getGroupHeaderSize(final CharGroup group, final FormatOptions options) {
+ if (BinaryDictIOUtils.supportsDynamicUpdate(options)) {
+ return FormatSpec.GROUP_FLAGS_SIZE + FormatSpec.PARENT_ADDRESS_SIZE
+ + getGroupCharactersSize(group);
+ } else {
+ return FormatSpec.GROUP_FLAGS_SIZE + getGroupCharactersSize(group);
+ }
+ }
+
+ /**
+ * Compute the size, in bytes, that an address will occupy.
+ *
+ * This can be used either for children addresses (which are always positive) or for
+ * attribute, which may be positive or negative but
+ * store their sign bit separately.
+ *
+ * @param address the address
+ * @return the byte size.
+ */
+ static int getByteSize(final int address) {
+ assert(address <= FormatSpec.UINT24_MAX);
+ if (!BinaryDictIOUtils.hasChildrenAddress(address)) {
+ return 0;
+ } else if (Math.abs(address) <= FormatSpec.UINT8_MAX) {
+ return 1;
+ } else if (Math.abs(address) <= FormatSpec.UINT16_MAX) {
+ return 2;
+ } else {
+ return 3;
+ }
+ }
+
+ // End utility methods
+
+ // This method is responsible for finding a nice ordering of the nodes that favors run-time
+ // cache performance and dictionary size.
+ /* package for tests */ static ArrayList<Node> flattenTree(final Node root) {
+ final int treeSize = FusionDictionary.countCharGroups(root);
+ MakedictLog.i("Counted nodes : " + treeSize);
+ final ArrayList<Node> flatTree = new ArrayList<Node>(treeSize);
+ return flattenTreeInner(flatTree, root);
+ }
+
+ private static ArrayList<Node> flattenTreeInner(final ArrayList<Node> list, final Node node) {
+ // Removing the node is necessary if the tails are merged, because we would then
+ // add the same node several times when we only want it once. A number of places in
+ // the code also depends on any node being only once in the list.
+ // Merging tails can only be done if there are no attributes. Searching for attributes
+ // in LatinIME code depends on a total breadth-first ordering, which merging tails
+ // breaks. If there are no attributes, it should be fine (and reduce the file size)
+ // to merge tails, and removing the node from the list would be necessary. However,
+ // we don't merge tails because breaking the breadth-first ordering would result in
+ // extreme overhead at bigram lookup time (it would make the search function O(n) instead
+ // of the current O(log(n)), where n=number of nodes in the dictionary which is pretty
+ // high).
+ // If no nodes are ever merged, we can't have the same node twice in the list, hence
+ // searching for duplicates in unnecessary. It is also very performance consuming,
+ // since `list' is an ArrayList so it's an O(n) operation that runs on all nodes, making
+ // this simple list.remove operation O(n*n) overall. On Android this overhead is very
+ // high.
+ // For future reference, the code to remove duplicate is a simple : list.remove(node);
+ list.add(node);
+ final ArrayList<CharGroup> branches = node.mData;
+ final int nodeSize = branches.size();
+ for (CharGroup group : branches) {
+ if (null != group.mChildren) flattenTreeInner(list, group.mChildren);
+ }
+ return list;
+ }
+
+ /**
+ * Get the offset from a position inside a current node to a target node, during update.
+ *
+ * If the current node is before the target node, the target node has not been updated yet,
+ * so we should return the offset from the old position of the current node to the old position
+ * of the target node. If on the other hand the target is before the current node, it already
+ * has been updated, so we should return the offset from the new position in the current node
+ * to the new position in the target node.
+ * @param currentNode the node containing the CharGroup where the offset will be written
+ * @param offsetFromStartOfCurrentNode the offset, in bytes, from the start of currentNode
+ * @param targetNode the target node to get the offset to
+ * @return the offset to the target node
+ */
+ private static int getOffsetToTargetNodeDuringUpdate(final Node currentNode,
+ final int offsetFromStartOfCurrentNode, final Node targetNode) {
+ final boolean isTargetBeforeCurrent = (targetNode.mCachedAddressBeforeUpdate
+ < currentNode.mCachedAddressBeforeUpdate);
+ if (isTargetBeforeCurrent) {
+ return targetNode.mCachedAddressAfterUpdate
+ - (currentNode.mCachedAddressAfterUpdate + offsetFromStartOfCurrentNode);
+ } else {
+ return targetNode.mCachedAddressBeforeUpdate
+ - (currentNode.mCachedAddressBeforeUpdate + offsetFromStartOfCurrentNode);
+ }
+ }
+
+ /**
+ * Get the offset from a position inside a current node to a target CharGroup, during update.
+ * @param currentNode the node containing the CharGroup where the offset will be written
+ * @param offsetFromStartOfCurrentNode the offset, in bytes, from the start of currentNode
+ * @param targetCharGroup the target CharGroup to get the offset to
+ * @return the offset to the target CharGroup
+ */
+ // TODO: is there any way to factorize this method with the one above?
+ private static int getOffsetToTargetCharGroupDuringUpdate(final Node currentNode,
+ final int offsetFromStartOfCurrentNode, final CharGroup targetCharGroup) {
+ final int oldOffsetBasePoint = currentNode.mCachedAddressBeforeUpdate
+ + offsetFromStartOfCurrentNode;
+ final boolean isTargetBeforeCurrent = (targetCharGroup.mCachedAddressBeforeUpdate
+ < oldOffsetBasePoint);
+ // If the target is before the current node, then its address has already been updated.
+ // We can use the AfterUpdate member, and compare it to our own member after update.
+ // Otherwise, the AfterUpdate member is not updated yet, so we need to use the BeforeUpdate
+ // member, and of course we have to compare this to our own address before update.
+ if (isTargetBeforeCurrent) {
+ final int newOffsetBasePoint = currentNode.mCachedAddressAfterUpdate
+ + offsetFromStartOfCurrentNode;
+ return targetCharGroup.mCachedAddressAfterUpdate - newOffsetBasePoint;
+ } else {
+ return targetCharGroup.mCachedAddressBeforeUpdate - oldOffsetBasePoint;
+ }
+ }
+
+ /**
+ * Computes the actual node size, based on the cached addresses of the children nodes.
+ *
+ * Each node stores its tentative address. During dictionary address computing, these
+ * are not final, but they can be used to compute the node size (the node size depends
+ * on the address of the children because the number of bytes necessary to store an
+ * address depends on its numeric value. The return value indicates whether the node
+ * contents (as in, any of the addresses stored in the cache fields) have changed with
+ * respect to their previous value.
+ *
+ * @param node the node to compute the size of.
+ * @param dict the dictionary in which the word/attributes are to be found.
+ * @param formatOptions file format options.
+ * @return false if none of the cached addresses inside the node changed, true otherwise.
+ */
+ private static boolean computeActualNodeSize(final Node node, final FusionDictionary dict,
+ final FormatOptions formatOptions) {
+ boolean changed = false;
+ int size = getGroupCountSize(node);
+ for (CharGroup group : node.mData) {
+ group.mCachedAddressAfterUpdate = node.mCachedAddressAfterUpdate + size;
+ if (group.mCachedAddressAfterUpdate != group.mCachedAddressBeforeUpdate) {
+ changed = true;
+ }
+ int groupSize = getGroupHeaderSize(group, formatOptions);
+ if (group.isTerminal()) groupSize += FormatSpec.GROUP_FREQUENCY_SIZE;
+ if (null == group.mChildren && formatOptions.mSupportsDynamicUpdate) {
+ groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
+ } else if (null != group.mChildren) {
+ if (formatOptions.mSupportsDynamicUpdate) {
+ groupSize += FormatSpec.SIGNED_CHILDREN_ADDRESS_SIZE;
+ } else {
+ groupSize += getByteSize(getOffsetToTargetNodeDuringUpdate(node,
+ groupSize + size, group.mChildren));
+ }
+ }
+ groupSize += getShortcutListSize(group.mShortcutTargets);
+ if (null != group.mBigrams) {
+ for (WeightedString bigram : group.mBigrams) {
+ final int offset = getOffsetToTargetCharGroupDuringUpdate(node,
+ groupSize + size + FormatSpec.GROUP_FLAGS_SIZE,
+ FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord));
+ groupSize += getByteSize(offset) + FormatSpec.GROUP_FLAGS_SIZE;
+ }
+ }
+ group.mCachedSize = groupSize;
+ size += groupSize;
+ }
+ if (formatOptions.mSupportsDynamicUpdate) {
+ size += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
+ }
+ if (node.mCachedSize != size) {
+ node.mCachedSize = size;
+ changed = true;
+ }
+ return changed;
+ }
+
+ /**
+ * Initializes the cached addresses of nodes from their size.
+ *
+ * @param flatNodes the array of nodes.
+ * @param formatOptions file format options.
+ * @return the byte size of the entire stack.
+ */
+ private static int initializeNodesCachedAddresses(final ArrayList<Node> flatNodes,
+ final FormatOptions formatOptions) {
+ int nodeOffset = 0;
+ for (final Node n : flatNodes) {
+ n.mCachedAddressBeforeUpdate = nodeOffset;
+ int groupCountSize = getGroupCountSize(n);
+ int groupOffset = 0;
+ for (final CharGroup g : n.mData) {
+ g.mCachedAddressBeforeUpdate = g.mCachedAddressAfterUpdate =
+ groupCountSize + nodeOffset + groupOffset;
+ groupOffset += g.mCachedSize;
+ }
+ final int nodeSize = groupCountSize + groupOffset
+ + (formatOptions.mSupportsDynamicUpdate
+ ? FormatSpec.FORWARD_LINK_ADDRESS_SIZE : 0);
+ nodeOffset += n.mCachedSize;
+ }
+ return nodeOffset;
+ }
+
+ /**
+ * Updates the cached addresses of nodes after recomputing their new positions.
+ *
+ * @param flatNodes the array of nodes.
+ */
+ private static void updateNodeCachedAddresses(final ArrayList<Node> flatNodes) {
+ for (final Node n : flatNodes) {
+ n.mCachedAddressBeforeUpdate = n.mCachedAddressAfterUpdate;
+ for (final CharGroup g : n.mData) {
+ g.mCachedAddressBeforeUpdate = g.mCachedAddressAfterUpdate;
+ }
+ }
+ }
+
+ /**
+ * Compute the cached parent addresses after all has been updated.
+ *
+ * The parent addresses are used by some binary formats at write-to-disk time. Not all formats
+ * need them. In particular, version 2 does not need them, and version 3 does.
+ *
+ * @param flatNodes the flat array of nodes to fill in
+ */
+ private static void computeParentAddresses(final ArrayList<Node> flatNodes) {
+ for (final Node node : flatNodes) {
+ for (final CharGroup group : node.mData) {
+ if (null != group.mChildren) {
+ // Assign my address to children's parent address
+ // Here BeforeUpdate and AfterUpdate addresses have the same value, so it
+ // does not matter which we use.
+ group.mChildren.mCachedParentAddress = group.mCachedAddressAfterUpdate
+ - group.mChildren.mCachedAddressAfterUpdate;
+ }
+ }
+ }
+ }
+
+ /**
+ * Compute the addresses and sizes of an ordered node array.
+ *
+ * This method takes a node array and will update its cached address and size values
+ * so that they can be written into a file. It determines the smallest size each of the
+ * nodes can be given the addresses of its children and attributes, and store that into
+ * each node.
+ * The order of the node is given by the order of the array. This method makes no effort
+ * to find a good order; it only mechanically computes the size this order results in.
+ *
+ * @param dict the dictionary
+ * @param flatNodes the ordered array of nodes
+ * @param formatOptions file format options.
+ * @return the same array it was passed. The nodes have been updated for address and size.
+ */
+ private static ArrayList<Node> computeAddresses(final FusionDictionary dict,
+ final ArrayList<Node> flatNodes, final FormatOptions formatOptions) {
+ // First get the worst possible sizes and offsets
+ for (final Node n : flatNodes) calculateNodeMaximumSize(n, formatOptions);
+ final int offset = initializeNodesCachedAddresses(flatNodes, formatOptions);
+
+ MakedictLog.i("Compressing the array addresses. Original size : " + offset);
+ MakedictLog.i("(Recursively seen size : " + offset + ")");
+
+ int passes = 0;
+ boolean changesDone = false;
+ do {
+ changesDone = false;
+ int nodeStartOffset = 0;
+ for (final Node n : flatNodes) {
+ n.mCachedAddressAfterUpdate = nodeStartOffset;
+ final int oldNodeSize = n.mCachedSize;
+ final boolean changed = computeActualNodeSize(n, dict, formatOptions);
+ final int newNodeSize = n.mCachedSize;
+ if (oldNodeSize < newNodeSize) throw new RuntimeException("Increased size ?!");
+ nodeStartOffset += newNodeSize;
+ changesDone |= changed;
+ }
+ updateNodeCachedAddresses(flatNodes);
+ ++passes;
+ if (passes > MAX_PASSES) throw new RuntimeException("Too many passes - probably a bug");
+ } while (changesDone);
+
+ if (formatOptions.mSupportsDynamicUpdate) {
+ computeParentAddresses(flatNodes);
+ }
+ final Node lastNode = flatNodes.get(flatNodes.size() - 1);
+ MakedictLog.i("Compression complete in " + passes + " passes.");
+ MakedictLog.i("After address compression : "
+ + (lastNode.mCachedAddressAfterUpdate + lastNode.mCachedSize));
+
+ return flatNodes;
+ }
+
+ /**
+ * Sanity-checking method.
+ *
+ * This method checks an array of node for juxtaposition, that is, it will do
+ * nothing if each node's cached address is actually the previous node's address
+ * plus the previous node's size.
+ * If this is not the case, it will throw an exception.
+ *
+ * @param array the array node to check
+ */
+ private static void checkFlatNodeArray(final ArrayList<Node> array) {
+ int offset = 0;
+ int index = 0;
+ for (final Node n : array) {
+ // BeforeUpdate and AfterUpdate addresses are the same here, so it does not matter
+ // which we use.
+ if (n.mCachedAddressAfterUpdate != offset) {
+ throw new RuntimeException("Wrong address for node " + index
+ + " : expected " + offset + ", got " + n.mCachedAddressAfterUpdate);
+ }
+ ++index;
+ offset += n.mCachedSize;
+ }
+ }
+
+ /**
+ * Helper method to write a variable-size address to a file.
+ *
+ * @param buffer the buffer to write to.
+ * @param index the index in the buffer to write the address to.
+ * @param address the address to write.
+ * @return the size in bytes the address actually took.
+ */
+ private static int writeVariableAddress(final byte[] buffer, int index, final int address) {
+ switch (getByteSize(address)) {
+ case 1:
+ buffer[index++] = (byte)address;
+ return 1;
+ case 2:
+ buffer[index++] = (byte)(0xFF & (address >> 8));
+ buffer[index++] = (byte)(0xFF & address);
+ return 2;
+ case 3:
+ buffer[index++] = (byte)(0xFF & (address >> 16));
+ buffer[index++] = (byte)(0xFF & (address >> 8));
+ buffer[index++] = (byte)(0xFF & address);
+ return 3;
+ case 0:
+ return 0;
+ default:
+ throw new RuntimeException("Address " + address + " has a strange size");
+ }
+ }
+
+ /**
+ * Helper method to write a variable-size signed address to a file.
+ *
+ * @param buffer the buffer to write to.
+ * @param index the index in the buffer to write the address to.
+ * @param address the address to write.
+ * @return the size in bytes the address actually took.
+ */
+ private static int writeVariableSignedAddress(final byte[] buffer, int index,
+ final int address) {
+ if (!BinaryDictIOUtils.hasChildrenAddress(address)) {
+ buffer[index] = buffer[index + 1] = buffer[index + 2] = 0;
+ } else {
+ final int absAddress = Math.abs(address);
+ buffer[index++] =
+ (byte)((address < 0 ? FormatSpec.MSB8 : 0) | (0xFF & (absAddress >> 16)));
+ buffer[index++] = (byte)(0xFF & (absAddress >> 8));
+ buffer[index++] = (byte)(0xFF & absAddress);
+ }
+ return 3;
+ }
+
+ /**
+ * Makes the flag value for a char group.
+ *
+ * @param hasMultipleChars whether the group has multiple chars.
+ * @param isTerminal whether the group is terminal.
+ * @param childrenAddressSize the size of a children address.
+ * @param hasShortcuts whether the group has shortcuts.
+ * @param hasBigrams whether the group has bigrams.
+ * @param isNotAWord whether the group is not a word.
+ * @param isBlackListEntry whether the group is a blacklist entry.
+ * @param formatOptions file format options.
+ * @return the flags
+ */
+ static int makeCharGroupFlags(final boolean hasMultipleChars, final boolean isTerminal,
+ final int childrenAddressSize, final boolean hasShortcuts, final boolean hasBigrams,
+ final boolean isNotAWord, final boolean isBlackListEntry,
+ final FormatOptions formatOptions) {
+ byte flags = 0;
+ if (hasMultipleChars) flags |= FormatSpec.FLAG_HAS_MULTIPLE_CHARS;
+ if (isTerminal) flags |= FormatSpec.FLAG_IS_TERMINAL;
+ if (formatOptions.mSupportsDynamicUpdate) {
+ flags |= FormatSpec.FLAG_IS_NOT_MOVED;
+ } else if (true) {
+ switch (childrenAddressSize) {
+ case 1:
+ flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_ONEBYTE;
+ break;
+ case 2:
+ flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_TWOBYTES;
+ break;
+ case 3:
+ flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_THREEBYTES;
+ break;
+ case 0:
+ flags |= FormatSpec.FLAG_GROUP_ADDRESS_TYPE_NOADDRESS;
+ break;
+ default:
+ throw new RuntimeException("Node with a strange address");
+ }
+ }
+ if (hasShortcuts) flags |= FormatSpec.FLAG_HAS_SHORTCUT_TARGETS;
+ if (hasBigrams) flags |= FormatSpec.FLAG_HAS_BIGRAMS;
+ if (isNotAWord) flags |= FormatSpec.FLAG_IS_NOT_A_WORD;
+ if (isBlackListEntry) flags |= FormatSpec.FLAG_IS_BLACKLISTED;
+ return flags;
+ }
+
+ private static byte makeCharGroupFlags(final CharGroup group, final int groupAddress,
+ final int childrenOffset, final FormatOptions formatOptions) {
+ return (byte) makeCharGroupFlags(group.mChars.length > 1, group.mFrequency >= 0,
+ getByteSize(childrenOffset), group.mShortcutTargets != null, group.mBigrams != null,
+ group.mIsNotAWord, group.mIsBlacklistEntry, formatOptions);
+ }
+
+ /**
+ * Makes the flag value for a bigram.
+ *
+ * @param more whether there are more bigrams after this one.
+ * @param offset the offset of the bigram.
+ * @param bigramFrequency the frequency of the bigram, 0..255.
+ * @param unigramFrequency the unigram frequency of the same word, 0..255.
+ * @param word the second bigram, for debugging purposes
+ * @return the flags
+ */
+ private static final int makeBigramFlags(final boolean more, final int offset,
+ int bigramFrequency, final int unigramFrequency, final String word) {
+ int bigramFlags = (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0)
+ + (offset < 0 ? FormatSpec.FLAG_ATTRIBUTE_OFFSET_NEGATIVE : 0);
+ switch (getByteSize(offset)) {
+ case 1:
+ bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE;
+ break;
+ case 2:
+ bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES;
+ break;
+ case 3:
+ bigramFlags |= FormatSpec.FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES;
+ break;
+ default:
+ throw new RuntimeException("Strange offset size");
+ }
+ if (unigramFrequency > bigramFrequency) {
+ MakedictLog.e("Unigram freq is superior to bigram freq for \"" + word
+ + "\". Bigram freq is " + bigramFrequency + ", unigram freq for "
+ + word + " is " + unigramFrequency);
+ bigramFrequency = unigramFrequency;
+ }
+ // We compute the difference between 255 (which means probability = 1) and the
+ // unigram score. We split this into a number of discrete steps.
+ // Now, the steps are numbered 0~15; 0 represents an increase of 1 step while 15
+ // represents an increase of 16 steps: a value of 15 will be interpreted as the median
+ // value of the 16th step. In all justice, if the bigram frequency is low enough to be
+ // rounded below the first step (which means it is less than half a step higher than the
+ // unigram frequency) then the unigram frequency itself is the best approximation of the
+ // bigram freq that we could possibly supply, hence we should *not* include this bigram
+ // in the file at all.
+ // until this is done, we'll write 0 and slightly overestimate this case.
+ // In other words, 0 means "between 0.5 step and 1.5 step", 1 means "between 1.5 step
+ // and 2.5 steps", and 15 means "between 15.5 steps and 16.5 steps". So we want to
+ // divide our range [unigramFreq..MAX_TERMINAL_FREQUENCY] in 16.5 steps to get the
+ // step size. Then we compute the start of the first step (the one where value 0 starts)
+ // by adding half-a-step to the unigramFrequency. From there, we compute the integer
+ // number of steps to the bigramFrequency. One last thing: we want our steps to include
+ // their lower bound and exclude their higher bound so we need to have the first step
+ // start at exactly 1 unit higher than floor(unigramFreq + half a step).
+ // Note : to reconstruct the score, the dictionary reader will need to divide
+ // MAX_TERMINAL_FREQUENCY - unigramFreq by 16.5 likewise to get the value of the step,
+ // and add (discretizedFrequency + 0.5 + 0.5) times this value to get the best
+ // approximation. (0.5 to get the first step start, and 0.5 to get the middle of the
+ // step pointed by the discretized frequency.
+ final float stepSize =
+ (FormatSpec.MAX_TERMINAL_FREQUENCY - unigramFrequency)
+ / (1.5f + FormatSpec.MAX_BIGRAM_FREQUENCY);
+ final float firstStepStart = 1 + unigramFrequency + (stepSize / 2.0f);
+ final int discretizedFrequency = (int)((bigramFrequency - firstStepStart) / stepSize);
+ // If the bigram freq is less than half-a-step higher than the unigram freq, we get -1
+ // here. The best approximation would be the unigram freq itself, so we should not
+ // include this bigram in the dictionary. For now, register as 0, and live with the
+ // small over-estimation that we get in this case. TODO: actually remove this bigram
+ // if discretizedFrequency < 0.
+ final int finalBigramFrequency = discretizedFrequency > 0 ? discretizedFrequency : 0;
+ bigramFlags += finalBigramFrequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY;
+ return bigramFlags;
+ }
+
+ /**
+ * Makes the 2-byte value for options flags.
+ */
+ private static final int makeOptionsValue(final FusionDictionary dictionary,
+ final FormatOptions formatOptions) {
+ final DictionaryOptions options = dictionary.mOptions;
+ final boolean hasBigrams = dictionary.hasBigrams();
+ return (options.mFrenchLigatureProcessing ? FormatSpec.FRENCH_LIGATURE_PROCESSING_FLAG : 0)
+ + (options.mGermanUmlautProcessing ? FormatSpec.GERMAN_UMLAUT_PROCESSING_FLAG : 0)
+ + (hasBigrams ? FormatSpec.CONTAINS_BIGRAMS_FLAG : 0)
+ + (formatOptions.mSupportsDynamicUpdate ? FormatSpec.SUPPORTS_DYNAMIC_UPDATE : 0);
+ }
+
+ /**
+ * Makes the flag value for a shortcut.
+ *
+ * @param more whether there are more attributes after this one.
+ * @param frequency the frequency of the attribute, 0..15
+ * @return the flags
+ */
+ static final int makeShortcutFlags(final boolean more, final int frequency) {
+ return (more ? FormatSpec.FLAG_ATTRIBUTE_HAS_NEXT : 0)
+ + (frequency & FormatSpec.FLAG_ATTRIBUTE_FREQUENCY);
+ }
+
+ private static final int writeParentAddress(final byte[] buffer, final int index,
+ final int address, final FormatOptions formatOptions) {
+ if (BinaryDictIOUtils.supportsDynamicUpdate(formatOptions)) {
+ if (address == FormatSpec.NO_PARENT_ADDRESS) {
+ buffer[index] = buffer[index + 1] = buffer[index + 2] = 0;
+ } else {
+ final int absAddress = Math.abs(address);
+ assert(absAddress <= FormatSpec.SINT24_MAX);
+ buffer[index] = (byte)((address < 0 ? FormatSpec.MSB8 : 0)
+ | ((absAddress >> 16) & 0xFF));
+ buffer[index + 1] = (byte)((absAddress >> 8) & 0xFF);
+ buffer[index + 2] = (byte)(absAddress & 0xFF);
+ }
+ return index + 3;
+ } else {
+ return index;
+ }
+ }
+
+ /**
+ * Write a node to memory. The node is expected to have its final position cached.
+ *
+ * This can be an empty map, but the more is inside the faster the lookups will be. It can
+ * be carried on as long as nodes do not move.
+ *
+ * @param dict the dictionary the node is a part of (for relative offsets).
+ * @param buffer the memory buffer to write to.
+ * @param node the node to write.
+ * @param formatOptions file format options.
+ * @return the address of the END of the node.
+ */
+ @SuppressWarnings("unused")
+ private static int writePlacedNode(final FusionDictionary dict, byte[] buffer,
+ final Node node, final FormatOptions formatOptions) {
+ // TODO: Make the code in common with BinaryDictIOUtils#writeCharGroup
+ int index = node.mCachedAddressAfterUpdate;
+
+ final int groupCount = node.mData.size();
+ final int countSize = getGroupCountSize(node);
+ final int parentAddress = node.mCachedParentAddress;
+ if (1 == countSize) {
+ buffer[index++] = (byte)groupCount;
+ } else if (2 == countSize) {
+ // We need to signal 2-byte size by setting the top bit of the MSB to 1, so
+ // we | 0x80 to do this.
+ buffer[index++] = (byte)((groupCount >> 8) | 0x80);
+ buffer[index++] = (byte)(groupCount & 0xFF);
+ } else {
+ throw new RuntimeException("Strange size from getGroupCountSize : " + countSize);
+ }
+ int groupAddress = index;
+ for (int i = 0; i < groupCount; ++i) {
+ final CharGroup group = node.mData.get(i);
+ if (index != group.mCachedAddressAfterUpdate) {
+ throw new RuntimeException("Bug: write index is not the same as the cached address "
+ + "of the group : " + index + " <> " + group.mCachedAddressAfterUpdate);
+ }
+ groupAddress += getGroupHeaderSize(group, formatOptions);
+ // Sanity checks.
+ if (DBG && group.mFrequency > FormatSpec.MAX_TERMINAL_FREQUENCY) {
+ throw new RuntimeException("A node has a frequency > "
+ + FormatSpec.MAX_TERMINAL_FREQUENCY
+ + " : " + group.mFrequency);
+ }
+ if (group.mFrequency >= 0) groupAddress += FormatSpec.GROUP_FREQUENCY_SIZE;
+ final int childrenOffset = null == group.mChildren
+ ? FormatSpec.NO_CHILDREN_ADDRESS
+ : group.mChildren.mCachedAddressAfterUpdate - groupAddress;
+ buffer[index++] =
+ makeCharGroupFlags(group, groupAddress, childrenOffset, formatOptions);
+
+ if (parentAddress == FormatSpec.NO_PARENT_ADDRESS) {
+ index = writeParentAddress(buffer, index, parentAddress, formatOptions);
+ } else {
+ index = writeParentAddress(buffer, index, parentAddress
+ + (node.mCachedAddressAfterUpdate - group.mCachedAddressAfterUpdate),
+ formatOptions);
+ }
+
+ index = CharEncoding.writeCharArray(group.mChars, buffer, index);
+ if (group.hasSeveralChars()) {
+ buffer[index++] = FormatSpec.GROUP_CHARACTERS_TERMINATOR;
+ }
+ if (group.mFrequency >= 0) {
+ buffer[index++] = (byte) group.mFrequency;
+ }
+
+ final int shift;
+ if (formatOptions.mSupportsDynamicUpdate) {
+ shift = writeVariableSignedAddress(buffer, index, childrenOffset);
+ } else {
+ shift = writeVariableAddress(buffer, index, childrenOffset);
+ }
+ index += shift;
+ groupAddress += shift;
+
+ // Write shortcuts
+ if (null != group.mShortcutTargets) {
+ final int indexOfShortcutByteSize = index;
+ index += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
+ groupAddress += FormatSpec.GROUP_SHORTCUT_LIST_SIZE_SIZE;
+ final Iterator<WeightedString> shortcutIterator = group.mShortcutTargets.iterator();
+ while (shortcutIterator.hasNext()) {
+ final WeightedString target = shortcutIterator.next();
+ ++groupAddress;
+ int shortcutFlags = makeShortcutFlags(shortcutIterator.hasNext(),
+ target.mFrequency);
+ buffer[index++] = (byte)shortcutFlags;
+ final int shortcutShift = CharEncoding.writeString(buffer, index, target.mWord);
+ index += shortcutShift;
+ groupAddress += shortcutShift;
+ }
+ final int shortcutByteSize = index - indexOfShortcutByteSize;
+ if (shortcutByteSize > 0xFFFF) {
+ throw new RuntimeException("Shortcut list too large");
+ }
+ buffer[indexOfShortcutByteSize] = (byte)(shortcutByteSize >> 8);
+ buffer[indexOfShortcutByteSize + 1] = (byte)(shortcutByteSize & 0xFF);
+ }
+ // Write bigrams
+ if (null != group.mBigrams) {
+ final Iterator<WeightedString> bigramIterator = group.mBigrams.iterator();
+ while (bigramIterator.hasNext()) {
+ final WeightedString bigram = bigramIterator.next();
+ final CharGroup target =
+ FusionDictionary.findWordInTree(dict.mRoot, bigram.mWord);
+ final int addressOfBigram = target.mCachedAddressAfterUpdate;
+ final int unigramFrequencyForThisWord = target.mFrequency;
+ ++groupAddress;
+ final int offset = addressOfBigram - groupAddress;
+ int bigramFlags = makeBigramFlags(bigramIterator.hasNext(), offset,
+ bigram.mFrequency, unigramFrequencyForThisWord, bigram.mWord);
+ buffer[index++] = (byte)bigramFlags;
+ final int bigramShift = writeVariableAddress(buffer, index, Math.abs(offset));
+ index += bigramShift;
+ groupAddress += bigramShift;
+ }
+ }
+
+ }
+ if (formatOptions.mSupportsDynamicUpdate) {
+ buffer[index] = buffer[index + 1] = buffer[index + 2]
+ = FormatSpec.NO_FORWARD_LINK_ADDRESS;
+ index += FormatSpec.FORWARD_LINK_ADDRESS_SIZE;
+ }
+ if (index != node.mCachedAddressAfterUpdate + node.mCachedSize) throw new RuntimeException(
+ "Not the same size : written "
+ + (index - node.mCachedAddressAfterUpdate) + " bytes from a node that should have "
+ + node.mCachedSize + " bytes");
+ return index;
+ }
+
+ /**
+ * Dumps a collection of useful statistics about a node array.
+ *
+ * This prints purely informative stuff, like the total estimated file size, the
+ * number of nodes, of character groups, the repartition of each address size, etc
+ *
+ * @param nodes the node array.
+ */
+ private static void showStatistics(ArrayList<Node> nodes) {
+ int firstTerminalAddress = Integer.MAX_VALUE;
+ int lastTerminalAddress = Integer.MIN_VALUE;
+ int size = 0;
+ int charGroups = 0;
+ int maxGroups = 0;
+ int maxRuns = 0;
+ for (final Node n : nodes) {
+ if (maxGroups < n.mData.size()) maxGroups = n.mData.size();
+ for (final CharGroup cg : n.mData) {
+ ++charGroups;
+ if (cg.mChars.length > maxRuns) maxRuns = cg.mChars.length;
+ if (cg.mFrequency >= 0) {
+ if (n.mCachedAddressAfterUpdate < firstTerminalAddress)
+ firstTerminalAddress = n.mCachedAddressAfterUpdate;
+ if (n.mCachedAddressAfterUpdate > lastTerminalAddress)
+ lastTerminalAddress = n.mCachedAddressAfterUpdate;
+ }
+ }
+ if (n.mCachedAddressAfterUpdate + n.mCachedSize > size) {
+ size = n.mCachedAddressAfterUpdate + n.mCachedSize;
+ }
+ }
+ final int[] groupCounts = new int[maxGroups + 1];
+ final int[] runCounts = new int[maxRuns + 1];
+ for (final Node n : nodes) {
+ ++groupCounts[n.mData.size()];
+ for (final CharGroup cg : n.mData) {
+ ++runCounts[cg.mChars.length];
+ }
+ }
+
+ MakedictLog.i("Statistics:\n"
+ + " total file size " + size + "\n"
+ + " " + nodes.size() + " nodes\n"
+ + " " + charGroups + " groups (" + ((float)charGroups / nodes.size())
+ + " groups per node)\n"
+ + " first terminal at " + firstTerminalAddress + "\n"
+ + " last terminal at " + lastTerminalAddress + "\n"
+ + " Group stats : max = " + maxGroups);
+ for (int i = 0; i < groupCounts.length; ++i) {
+ MakedictLog.i(" " + i + " : " + groupCounts[i]);
+ }
+ MakedictLog.i(" Character run stats : max = " + maxRuns);
+ for (int i = 0; i < runCounts.length; ++i) {
+ MakedictLog.i(" " + i + " : " + runCounts[i]);
+ }
+ }
+
+ /**
+ * Dumps a FusionDictionary to a file.
+ *
+ * This is the public entry point to write a dictionary to a file.
+ *
+ * @param destination the stream to write the binary data to.
+ * @param dict the dictionary to write.
+ * @param formatOptions file format options.
+ */
+ public static void writeDictionaryBinary(final OutputStream destination,
+ final FusionDictionary dict, final FormatOptions formatOptions)
+ throws IOException, UnsupportedFormatException {
+
+ // Addresses are limited to 3 bytes, but since addresses can be relative to each node, the
+ // structure itself is not limited to 16MB. However, if it is over 16MB deciding the order
+ // of the nodes becomes a quite complicated problem, because though the dictionary itself
+ // does not have a size limit, each node must still be within 16MB of all its children and
+ // parents. As long as this is ensured, the dictionary file may grow to any size.
+
+ final int version = formatOptions.mVersion;
+ if (version < FormatSpec.MINIMUM_SUPPORTED_VERSION
+ || version > FormatSpec.MAXIMUM_SUPPORTED_VERSION) {
+ throw new UnsupportedFormatException("Requested file format version " + version
+ + ", but this implementation only supports versions "
+ + FormatSpec.MINIMUM_SUPPORTED_VERSION + " through "
+ + FormatSpec.MAXIMUM_SUPPORTED_VERSION);
+ }
+
+ ByteArrayOutputStream headerBuffer = new ByteArrayOutputStream(256);
+
+ // The magic number in big-endian order.
+ // Magic number for all versions.
+ headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 24)));
+ headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 16)));
+ headerBuffer.write((byte) (0xFF & (FormatSpec.MAGIC_NUMBER >> 8)));
+ headerBuffer.write((byte) (0xFF & FormatSpec.MAGIC_NUMBER));
+ // Dictionary version.
+ headerBuffer.write((byte) (0xFF & (version >> 8)));
+ headerBuffer.write((byte) (0xFF & version));
+
+ // Options flags
+ final int options = makeOptionsValue(dict, formatOptions);
+ headerBuffer.write((byte) (0xFF & (options >> 8)));
+ headerBuffer.write((byte) (0xFF & options));
+ final int headerSizeOffset = headerBuffer.size();
+ // Placeholder to be written later with header size.
+ for (int i = 0; i < 4; ++i) {
+ headerBuffer.write(0);
+ }
+ // Write out the options.
+ for (final String key : dict.mOptions.mAttributes.keySet()) {
+ final String value = dict.mOptions.mAttributes.get(key);
+ CharEncoding.writeString(headerBuffer, key);
+ CharEncoding.writeString(headerBuffer, value);
+ }
+ final int size = headerBuffer.size();
+ final byte[] bytes = headerBuffer.toByteArray();
+ // Write out the header size.
+ bytes[headerSizeOffset] = (byte) (0xFF & (size >> 24));
+ bytes[headerSizeOffset + 1] = (byte) (0xFF & (size >> 16));
+ bytes[headerSizeOffset + 2] = (byte) (0xFF & (size >> 8));
+ bytes[headerSizeOffset + 3] = (byte) (0xFF & (size >> 0));
+ destination.write(bytes);
+
+ headerBuffer.close();
+
+ // Leave the choice of the optimal node order to the flattenTree function.
+ MakedictLog.i("Flattening the tree...");
+ ArrayList<Node> flatNodes = flattenTree(dict.mRoot);
+
+ MakedictLog.i("Computing addresses...");
+ computeAddresses(dict, flatNodes, formatOptions);
+ MakedictLog.i("Checking array...");
+ if (DBG) checkFlatNodeArray(flatNodes);
+
+ // Create a buffer that matches the final dictionary size.
+ final Node lastNode = flatNodes.get(flatNodes.size() - 1);
+ final int bufferSize = lastNode.mCachedAddressAfterUpdate + lastNode.mCachedSize;
+ final byte[] buffer = new byte[bufferSize];
+ int index = 0;
+
+ MakedictLog.i("Writing file...");
+ int dataEndOffset = 0;
+ for (Node n : flatNodes) {
+ dataEndOffset = writePlacedNode(dict, buffer, n, formatOptions);
+ }
+
+ if (DBG) showStatistics(flatNodes);
+
+ destination.write(buffer, 0, dataEndOffset);
+
+ destination.close();
+ MakedictLog.i("Done");
+ }
+}