aboutsummaryrefslogtreecommitdiffstats
path: root/java/src/com/android/inputmethod/latin/makedict/FusionDictionary.java
diff options
context:
space:
mode:
Diffstat (limited to 'java/src/com/android/inputmethod/latin/makedict/FusionDictionary.java')
-rw-r--r--java/src/com/android/inputmethod/latin/makedict/FusionDictionary.java767
1 files changed, 767 insertions, 0 deletions
diff --git a/java/src/com/android/inputmethod/latin/makedict/FusionDictionary.java b/java/src/com/android/inputmethod/latin/makedict/FusionDictionary.java
new file mode 100644
index 000000000..8b53c9427
--- /dev/null
+++ b/java/src/com/android/inputmethod/latin/makedict/FusionDictionary.java
@@ -0,0 +1,767 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License"); you may not
+ * use this file except in compliance with the License. You may obtain a copy of
+ * the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
+ * License for the specific language governing permissions and limitations under
+ * the License.
+ */
+
+package com.android.inputmethod.latin.makedict;
+
+import java.util.ArrayList;
+import java.util.Arrays;
+import java.util.Collections;
+import java.util.HashMap;
+import java.util.Iterator;
+import java.util.LinkedList;
+
+/**
+ * A dictionary that can fusion heads and tails of words for more compression.
+ */
+public class FusionDictionary implements Iterable<Word> {
+
+ private static final boolean DBG = MakedictLog.DBG;
+
+ /**
+ * A node of the dictionary, containing several CharGroups.
+ *
+ * A node is but an ordered array of CharGroups, which essentially contain all the
+ * real information.
+ * This class also contains fields to cache size and address, to help with binary
+ * generation.
+ */
+ public static class Node {
+ ArrayList<CharGroup> mData;
+ // To help with binary generation
+ int mCachedSize;
+ int mCachedAddress;
+ public Node() {
+ mData = new ArrayList<CharGroup>();
+ mCachedSize = Integer.MIN_VALUE;
+ mCachedAddress = Integer.MIN_VALUE;
+ }
+ public Node(ArrayList<CharGroup> data) {
+ mData = data;
+ mCachedSize = Integer.MIN_VALUE;
+ mCachedAddress = Integer.MIN_VALUE;
+ }
+ }
+
+ /**
+ * A string with a frequency.
+ *
+ * This represents an "attribute", that is either a bigram or a shortcut.
+ */
+ public static class WeightedString {
+ final String mWord;
+ int mFrequency;
+ public WeightedString(String word, int frequency) {
+ mWord = word;
+ mFrequency = frequency;
+ }
+
+ @Override
+ public int hashCode() {
+ return Arrays.hashCode(new Object[] { mWord, mFrequency });
+ }
+
+ @Override
+ public boolean equals(Object o) {
+ if (o == this) return true;
+ if (!(o instanceof WeightedString)) return false;
+ WeightedString w = (WeightedString)o;
+ return mWord.equals(w.mWord) && mFrequency == w.mFrequency;
+ }
+ }
+
+ /**
+ * A group of characters, with a frequency, shortcut targets, bigrams, and children.
+ *
+ * This is the central class of the in-memory representation. A CharGroup is what can
+ * be seen as a traditional "trie node", except it can hold several characters at the
+ * same time. A CharGroup essentially represents one or several characters in the middle
+ * of the trie trie; as such, it can be a terminal, and it can have children.
+ * In this in-memory representation, whether the CharGroup is a terminal or not is represented
+ * in the frequency, where NOT_A_TERMINAL (= -1) means this is not a terminal and any other
+ * value is the frequency of this terminal. A terminal may have non-null shortcuts and/or
+ * bigrams, but a non-terminal may not. Moreover, children, if present, are null.
+ */
+ public static class CharGroup {
+ public static final int NOT_A_TERMINAL = -1;
+ final int mChars[];
+ ArrayList<WeightedString> mShortcutTargets;
+ ArrayList<WeightedString> mBigrams;
+ int mFrequency; // NOT_A_TERMINAL == mFrequency indicates this is not a terminal.
+ Node mChildren;
+ // The two following members to help with binary generation
+ int mCachedSize;
+ int mCachedAddress;
+
+ public CharGroup(final int[] chars, final ArrayList<WeightedString> shortcutTargets,
+ final ArrayList<WeightedString> bigrams, final int frequency) {
+ mChars = chars;
+ mFrequency = frequency;
+ mShortcutTargets = shortcutTargets;
+ mBigrams = bigrams;
+ mChildren = null;
+ }
+
+ public CharGroup(final int[] chars, final ArrayList<WeightedString> shortcutTargets,
+ final ArrayList<WeightedString> bigrams, final int frequency, final Node children) {
+ mChars = chars;
+ mFrequency = frequency;
+ mShortcutTargets = shortcutTargets;
+ mBigrams = bigrams;
+ mChildren = children;
+ }
+
+ public void addChild(CharGroup n) {
+ if (null == mChildren) {
+ mChildren = new Node();
+ }
+ mChildren.mData.add(n);
+ }
+
+ public boolean isTerminal() {
+ return NOT_A_TERMINAL != mFrequency;
+ }
+
+ public boolean hasSeveralChars() {
+ assert(mChars.length > 0);
+ return 1 < mChars.length;
+ }
+
+ /**
+ * Adds a word to the bigram list. Updates the frequency if the word already
+ * exists.
+ */
+ public void addBigram(final String word, final int frequency) {
+ if (mBigrams == null) {
+ mBigrams = new ArrayList<WeightedString>();
+ }
+ WeightedString bigram = getBigram(word);
+ if (bigram != null) {
+ bigram.mFrequency = frequency;
+ } else {
+ bigram = new WeightedString(word, frequency);
+ mBigrams.add(bigram);
+ }
+ }
+
+ /**
+ * Gets the shortcut target for the given word. Returns null if the word is not in the
+ * shortcut list.
+ */
+ public WeightedString getShortcut(final String word) {
+ // TODO: Don't do a linear search
+ if (mShortcutTargets != null) {
+ final int size = mShortcutTargets.size();
+ for (int i = 0; i < size; ++i) {
+ WeightedString shortcut = mShortcutTargets.get(i);
+ if (shortcut.mWord.equals(word)) {
+ return shortcut;
+ }
+ }
+ }
+ return null;
+ }
+
+ /**
+ * Gets the bigram for the given word.
+ * Returns null if the word is not in the bigrams list.
+ */
+ public WeightedString getBigram(final String word) {
+ // TODO: Don't do a linear search
+ if (mBigrams != null) {
+ final int size = mBigrams.size();
+ for (int i = 0; i < size; ++i) {
+ WeightedString bigram = mBigrams.get(i);
+ if (bigram.mWord.equals(word)) {
+ return bigram;
+ }
+ }
+ }
+ return null;
+ }
+
+ /**
+ * Updates the CharGroup with the given properties. Adds the shortcut and bigram lists to
+ * the existing ones if any. Note: unigram, bigram, and shortcut frequencies are only
+ * updated if they are higher than the existing ones.
+ */
+ public void update(int frequency, ArrayList<WeightedString> shortcutTargets,
+ ArrayList<WeightedString> bigrams) {
+ if (frequency > mFrequency) {
+ mFrequency = frequency;
+ }
+ if (shortcutTargets != null) {
+ if (mShortcutTargets == null) {
+ mShortcutTargets = shortcutTargets;
+ } else {
+ final int size = shortcutTargets.size();
+ for (int i = 0; i < size; ++i) {
+ final WeightedString shortcut = shortcutTargets.get(i);
+ final WeightedString existingShortcut = getShortcut(shortcut.mWord);
+ if (existingShortcut == null) {
+ mShortcutTargets.add(shortcut);
+ } else if (existingShortcut.mFrequency < shortcut.mFrequency) {
+ existingShortcut.mFrequency = shortcut.mFrequency;
+ }
+ }
+ }
+ }
+ if (bigrams != null) {
+ if (mBigrams == null) {
+ mBigrams = bigrams;
+ } else {
+ final int size = bigrams.size();
+ for (int i = 0; i < size; ++i) {
+ final WeightedString bigram = bigrams.get(i);
+ final WeightedString existingBigram = getBigram(bigram.mWord);
+ if (existingBigram == null) {
+ mBigrams.add(bigram);
+ } else if (existingBigram.mFrequency < bigram.mFrequency) {
+ existingBigram.mFrequency = bigram.mFrequency;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ /**
+ * Options global to the dictionary.
+ *
+ * There are no options at the moment, so this class is empty.
+ */
+ public static class DictionaryOptions {
+ public final boolean mGermanUmlautProcessing;
+ public final boolean mFrenchLigatureProcessing;
+ public final HashMap<String, String> mAttributes;
+ public DictionaryOptions(final HashMap<String, String> attributes,
+ final boolean germanUmlautProcessing, final boolean frenchLigatureProcessing) {
+ mAttributes = attributes;
+ mGermanUmlautProcessing = germanUmlautProcessing;
+ mFrenchLigatureProcessing = frenchLigatureProcessing;
+ }
+ }
+
+ public final DictionaryOptions mOptions;
+ public final Node mRoot;
+
+ public FusionDictionary(final Node root, final DictionaryOptions options) {
+ mRoot = root;
+ mOptions = options;
+ }
+
+ public void addOptionAttribute(final String key, final String value) {
+ mOptions.mAttributes.put(key, value);
+ }
+
+ /**
+ * Helper method to convert a String to an int array.
+ */
+ static private int[] getCodePoints(final String word) {
+ // TODO: this is a copy-paste of the contents of StringUtils.toCodePointArray,
+ // which is not visible from the makedict package. Factor this code.
+ final char[] characters = word.toCharArray();
+ final int length = characters.length;
+ final int[] codePoints = new int[Character.codePointCount(characters, 0, length)];
+ int codePoint = Character.codePointAt(characters, 0);
+ int dsti = 0;
+ for (int srci = Character.charCount(codePoint);
+ srci < length; srci += Character.charCount(codePoint), ++dsti) {
+ codePoints[dsti] = codePoint;
+ codePoint = Character.codePointAt(characters, srci);
+ }
+ codePoints[dsti] = codePoint;
+ return codePoints;
+ }
+
+ /**
+ * Helper method to add a word as a string.
+ *
+ * This method adds a word to the dictionary with the given frequency. Optional
+ * lists of bigrams and shortcuts can be passed here. For each word inside,
+ * they will be added to the dictionary as necessary.
+ *
+ * @param word the word to add.
+ * @param frequency the frequency of the word, in the range [0..255].
+ * @param shortcutTargets a list of shortcut targets for this word, or null.
+ */
+ public void add(final String word, final int frequency,
+ final ArrayList<WeightedString> shortcutTargets) {
+ add(getCodePoints(word), frequency, shortcutTargets);
+ }
+
+ /**
+ * Sanity check for a node.
+ *
+ * This method checks that all CharGroups in a node are ordered as expected.
+ * If they are, nothing happens. If they aren't, an exception is thrown.
+ */
+ private void checkStack(Node node) {
+ ArrayList<CharGroup> stack = node.mData;
+ int lastValue = -1;
+ for (int i = 0; i < stack.size(); ++i) {
+ int currentValue = stack.get(i).mChars[0];
+ if (currentValue <= lastValue)
+ throw new RuntimeException("Invalid stack");
+ else
+ lastValue = currentValue;
+ }
+ }
+
+ /**
+ * Helper method to add a new bigram to the dictionary.
+ *
+ * @param word1 the previous word of the context
+ * @param word2 the next word of the context
+ * @param frequency the bigram frequency
+ */
+ public void setBigram(final String word1, final String word2, final int frequency) {
+ CharGroup charGroup = findWordInTree(mRoot, word1);
+ if (charGroup != null) {
+ final CharGroup charGroup2 = findWordInTree(mRoot, word2);
+ if (charGroup2 == null) {
+ add(getCodePoints(word2), 0, null);
+ }
+ charGroup.addBigram(word2, frequency);
+ } else {
+ throw new RuntimeException("First word of bigram not found");
+ }
+ }
+
+ /**
+ * Add a word to this dictionary.
+ *
+ * The shortcuts, if any, have to be in the dictionary already. If they aren't,
+ * an exception is thrown.
+ *
+ * @param word the word, as an int array.
+ * @param frequency the frequency of the word, in the range [0..255].
+ * @param shortcutTargets an optional list of shortcut targets for this word (null if none).
+ */
+ private void add(final int[] word, final int frequency,
+ final ArrayList<WeightedString> shortcutTargets) {
+ assert(frequency >= 0 && frequency <= 255);
+ Node currentNode = mRoot;
+ int charIndex = 0;
+
+ CharGroup currentGroup = null;
+ int differentCharIndex = 0; // Set by the loop to the index of the char that differs
+ int nodeIndex = findIndexOfChar(mRoot, word[charIndex]);
+ while (CHARACTER_NOT_FOUND != nodeIndex) {
+ currentGroup = currentNode.mData.get(nodeIndex);
+ differentCharIndex = compareArrays(currentGroup.mChars, word, charIndex);
+ if (ARRAYS_ARE_EQUAL != differentCharIndex
+ && differentCharIndex < currentGroup.mChars.length) break;
+ if (null == currentGroup.mChildren) break;
+ charIndex += currentGroup.mChars.length;
+ if (charIndex >= word.length) break;
+ currentNode = currentGroup.mChildren;
+ nodeIndex = findIndexOfChar(currentNode, word[charIndex]);
+ }
+
+ if (-1 == nodeIndex) {
+ // No node at this point to accept the word. Create one.
+ final int insertionIndex = findInsertionIndex(currentNode, word[charIndex]);
+ final CharGroup newGroup = new CharGroup(
+ Arrays.copyOfRange(word, charIndex, word.length),
+ shortcutTargets, null /* bigrams */, frequency);
+ currentNode.mData.add(insertionIndex, newGroup);
+ if (DBG) checkStack(currentNode);
+ } else {
+ // There is a word with a common prefix.
+ if (differentCharIndex == currentGroup.mChars.length) {
+ if (charIndex + differentCharIndex >= word.length) {
+ // The new word is a prefix of an existing word, but the node on which it
+ // should end already exists as is. Since the old CharNode was not a terminal,
+ // make it one by filling in its frequency and other attributes
+ currentGroup.update(frequency, shortcutTargets, null);
+ } else {
+ // The new word matches the full old word and extends past it.
+ // We only have to create a new node and add it to the end of this.
+ final CharGroup newNode = new CharGroup(
+ Arrays.copyOfRange(word, charIndex + differentCharIndex, word.length),
+ shortcutTargets, null /* bigrams */, frequency);
+ currentGroup.mChildren = new Node();
+ currentGroup.mChildren.mData.add(newNode);
+ }
+ } else {
+ if (0 == differentCharIndex) {
+ // Exact same word. Update the frequency if higher. This will also add the
+ // new shortcuts to the existing shortcut list if it already exists.
+ currentGroup.update(frequency, shortcutTargets, null);
+ } else {
+ // Partial prefix match only. We have to replace the current node with a node
+ // containing the current prefix and create two new ones for the tails.
+ Node newChildren = new Node();
+ final CharGroup newOldWord = new CharGroup(
+ Arrays.copyOfRange(currentGroup.mChars, differentCharIndex,
+ currentGroup.mChars.length), currentGroup.mShortcutTargets,
+ currentGroup.mBigrams, currentGroup.mFrequency, currentGroup.mChildren);
+ newChildren.mData.add(newOldWord);
+
+ final CharGroup newParent;
+ if (charIndex + differentCharIndex >= word.length) {
+ newParent = new CharGroup(
+ Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
+ shortcutTargets, null /* bigrams */, frequency, newChildren);
+ } else {
+ newParent = new CharGroup(
+ Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
+ null /* shortcutTargets */, null /* bigrams */, -1, newChildren);
+ final CharGroup newWord = new CharGroup(Arrays.copyOfRange(word,
+ charIndex + differentCharIndex, word.length),
+ shortcutTargets, null /* bigrams */, frequency);
+ final int addIndex = word[charIndex + differentCharIndex]
+ > currentGroup.mChars[differentCharIndex] ? 1 : 0;
+ newChildren.mData.add(addIndex, newWord);
+ }
+ currentNode.mData.set(nodeIndex, newParent);
+ }
+ if (DBG) checkStack(currentNode);
+ }
+ }
+ }
+
+ private static int ARRAYS_ARE_EQUAL = 0;
+
+ /**
+ * Custom comparison of two int arrays taken to contain character codes.
+ *
+ * This method compares the two arrays passed as an argument in a lexicographic way,
+ * with an offset in the dst string.
+ * This method does NOT test for the first character. It is taken to be equal.
+ * I repeat: this method starts the comparison at 1 <> dstOffset + 1.
+ * The index where the strings differ is returned. ARRAYS_ARE_EQUAL = 0 is returned if the
+ * strings are equal. This works BECAUSE we don't look at the first character.
+ *
+ * @param src the left-hand side string of the comparison.
+ * @param dst the right-hand side string of the comparison.
+ * @param dstOffset the offset in the right-hand side string.
+ * @return the index at which the strings differ, or ARRAYS_ARE_EQUAL = 0 if they don't.
+ */
+ private static int compareArrays(final int[] src, final int[] dst, int dstOffset) {
+ // We do NOT test the first char, because we come from a method that already
+ // tested it.
+ for (int i = 1; i < src.length; ++i) {
+ if (dstOffset + i >= dst.length) return i;
+ if (src[i] != dst[dstOffset + i]) return i;
+ }
+ if (dst.length > src.length) return src.length;
+ return ARRAYS_ARE_EQUAL;
+ }
+
+ /**
+ * Helper class that compares and sorts two chargroups according to their
+ * first element only. I repeat: ONLY the first element is considered, the rest
+ * is ignored.
+ * This comparator imposes orderings that are inconsistent with equals.
+ */
+ static private class CharGroupComparator implements java.util.Comparator<CharGroup> {
+ @Override
+ public int compare(CharGroup c1, CharGroup c2) {
+ if (c1.mChars[0] == c2.mChars[0]) return 0;
+ return c1.mChars[0] < c2.mChars[0] ? -1 : 1;
+ }
+ }
+ final static private CharGroupComparator CHARGROUP_COMPARATOR = new CharGroupComparator();
+
+ /**
+ * Finds the insertion index of a character within a node.
+ */
+ private static int findInsertionIndex(final Node node, int character) {
+ final ArrayList<CharGroup> data = node.mData;
+ final CharGroup reference = new CharGroup(new int[] { character },
+ null /* shortcutTargets */, null /* bigrams */, 0);
+ int result = Collections.binarySearch(data, reference, CHARGROUP_COMPARATOR);
+ return result >= 0 ? result : -result - 1;
+ }
+
+ private static int CHARACTER_NOT_FOUND = -1;
+
+ /**
+ * Find the index of a char in a node, if it exists.
+ *
+ * @param node the node to search in.
+ * @param character the character to search for.
+ * @return the position of the character if it's there, or CHARACTER_NOT_FOUND = -1 else.
+ */
+ private static int findIndexOfChar(final Node node, int character) {
+ final int insertionIndex = findInsertionIndex(node, character);
+ if (node.mData.size() <= insertionIndex) return CHARACTER_NOT_FOUND;
+ return character == node.mData.get(insertionIndex).mChars[0] ? insertionIndex
+ : CHARACTER_NOT_FOUND;
+ }
+
+ /**
+ * Helper method to find a word in a given branch.
+ */
+ public static CharGroup findWordInTree(Node node, final String s) {
+ int index = 0;
+ final StringBuilder checker = DBG ? new StringBuilder() : null;
+
+ CharGroup currentGroup;
+ do {
+ int indexOfGroup = findIndexOfChar(node, s.codePointAt(index));
+ if (CHARACTER_NOT_FOUND == indexOfGroup) return null;
+ currentGroup = node.mData.get(indexOfGroup);
+ if (DBG) checker.append(new String(currentGroup.mChars, 0, currentGroup.mChars.length));
+ index += currentGroup.mChars.length;
+ if (index < s.length()) {
+ node = currentGroup.mChildren;
+ }
+ } while (null != node && index < s.length());
+
+ if (DBG && !s.equals(checker.toString())) return null;
+ return currentGroup;
+ }
+
+ /**
+ * Helper method to find out whether a word is in the dict or not.
+ */
+ public boolean hasWord(final String s) {
+ if (null == s || "".equals(s)) {
+ throw new RuntimeException("Can't search for a null or empty string");
+ }
+ return null != findWordInTree(mRoot, s);
+ }
+
+ /**
+ * Recursively count the number of character groups in a given branch of the trie.
+ *
+ * @param node the parent node.
+ * @return the number of char groups in all the branch under this node.
+ */
+ public static int countCharGroups(final Node node) {
+ final int nodeSize = node.mData.size();
+ int size = nodeSize;
+ for (int i = nodeSize - 1; i >= 0; --i) {
+ CharGroup group = node.mData.get(i);
+ if (null != group.mChildren)
+ size += countCharGroups(group.mChildren);
+ }
+ return size;
+ }
+
+ /**
+ * Recursively count the number of nodes in a given branch of the trie.
+ *
+ * @param node the node to count.
+ * @return the number of nodes in this branch.
+ */
+ public static int countNodes(final Node node) {
+ int size = 1;
+ for (int i = node.mData.size() - 1; i >= 0; --i) {
+ CharGroup group = node.mData.get(i);
+ if (null != group.mChildren)
+ size += countNodes(group.mChildren);
+ }
+ return size;
+ }
+
+ // Recursively find out whether there are any bigrams.
+ // This can be pretty expensive especially if there aren't any (we return as soon
+ // as we find one, so it's much cheaper if there are bigrams)
+ private static boolean hasBigramsInternal(final Node node) {
+ if (null == node) return false;
+ for (int i = node.mData.size() - 1; i >= 0; --i) {
+ CharGroup group = node.mData.get(i);
+ if (null != group.mBigrams) return true;
+ if (hasBigramsInternal(group.mChildren)) return true;
+ }
+ return false;
+ }
+
+ /**
+ * Finds out whether there are any bigrams in this dictionary.
+ *
+ * @return true if there is any bigram, false otherwise.
+ */
+ // TODO: this is expensive especially for large dictionaries without any bigram.
+ // The up side is, this is always accurate and correct and uses no memory. We should
+ // find a more efficient way of doing this, without compromising too much on memory
+ // and ease of use.
+ public boolean hasBigrams() {
+ return hasBigramsInternal(mRoot);
+ }
+
+ // Historically, the tails of the words were going to be merged to save space.
+ // However, that would prevent the code to search for a specific address in log(n)
+ // time so this was abandoned.
+ // The code is still of interest as it does add some compression to any dictionary
+ // that has no need for attributes. Implementations that does not read attributes should be
+ // able to read a dictionary with merged tails.
+ // Also, the following code does support frequencies, as in, it will only merges
+ // tails that share the same frequency. Though it would result in the above loss of
+ // performance while searching by address, it is still technically possible to merge
+ // tails that contain attributes, but this code does not take that into account - it does
+ // not compare attributes and will merge terminals with different attributes regardless.
+ public void mergeTails() {
+ MakedictLog.i("Do not merge tails");
+ return;
+
+// MakedictLog.i("Merging nodes. Number of nodes : " + countNodes(root));
+// MakedictLog.i("Number of groups : " + countCharGroups(root));
+//
+// final HashMap<String, ArrayList<Node>> repository =
+// new HashMap<String, ArrayList<Node>>();
+// mergeTailsInner(repository, root);
+//
+// MakedictLog.i("Number of different pseudohashes : " + repository.size());
+// int size = 0;
+// for (ArrayList<Node> a : repository.values()) {
+// size += a.size();
+// }
+// MakedictLog.i("Number of nodes after merge : " + (1 + size));
+// MakedictLog.i("Recursively seen nodes : " + countNodes(root));
+ }
+
+ // The following methods are used by the deactivated mergeTails()
+// private static boolean isEqual(Node a, Node b) {
+// if (null == a && null == b) return true;
+// if (null == a || null == b) return false;
+// if (a.data.size() != b.data.size()) return false;
+// final int size = a.data.size();
+// for (int i = size - 1; i >= 0; --i) {
+// CharGroup aGroup = a.data.get(i);
+// CharGroup bGroup = b.data.get(i);
+// if (aGroup.frequency != bGroup.frequency) return false;
+// if (aGroup.alternates == null && bGroup.alternates != null) return false;
+// if (aGroup.alternates != null && !aGroup.equals(bGroup.alternates)) return false;
+// if (!Arrays.equals(aGroup.chars, bGroup.chars)) return false;
+// if (!isEqual(aGroup.children, bGroup.children)) return false;
+// }
+// return true;
+// }
+
+// static private HashMap<String, ArrayList<Node>> mergeTailsInner(
+// final HashMap<String, ArrayList<Node>> map, final Node node) {
+// final ArrayList<CharGroup> branches = node.data;
+// final int nodeSize = branches.size();
+// for (int i = 0; i < nodeSize; ++i) {
+// CharGroup group = branches.get(i);
+// if (null != group.children) {
+// String pseudoHash = getPseudoHash(group.children);
+// ArrayList<Node> similarList = map.get(pseudoHash);
+// if (null == similarList) {
+// similarList = new ArrayList<Node>();
+// map.put(pseudoHash, similarList);
+// }
+// boolean merged = false;
+// for (Node similar : similarList) {
+// if (isEqual(group.children, similar)) {
+// group.children = similar;
+// merged = true;
+// break;
+// }
+// }
+// if (!merged) {
+// similarList.add(group.children);
+// }
+// mergeTailsInner(map, group.children);
+// }
+// }
+// return map;
+// }
+
+// private static String getPseudoHash(final Node node) {
+// StringBuilder s = new StringBuilder();
+// for (CharGroup g : node.data) {
+// s.append(g.frequency);
+// for (int ch : g.chars){
+// s.append(Character.toChars(ch));
+// }
+// }
+// return s.toString();
+// }
+
+ /**
+ * Iterator to walk through a dictionary.
+ *
+ * This is purely for convenience.
+ */
+ public static class DictionaryIterator implements Iterator<Word> {
+
+ private static class Position {
+ public Iterator<CharGroup> pos;
+ public int length;
+ public Position(ArrayList<CharGroup> groups) {
+ pos = groups.iterator();
+ length = 0;
+ }
+ }
+ final StringBuilder mCurrentString;
+ final LinkedList<Position> mPositions;
+
+ public DictionaryIterator(ArrayList<CharGroup> root) {
+ mCurrentString = new StringBuilder();
+ mPositions = new LinkedList<Position>();
+ final Position rootPos = new Position(root);
+ mPositions.add(rootPos);
+ }
+
+ @Override
+ public boolean hasNext() {
+ for (Position p : mPositions) {
+ if (p.pos.hasNext()) {
+ return true;
+ }
+ }
+ return false;
+ }
+
+ @Override
+ public Word next() {
+ Position currentPos = mPositions.getLast();
+ mCurrentString.setLength(mCurrentString.length() - currentPos.length);
+
+ do {
+ if (currentPos.pos.hasNext()) {
+ final CharGroup currentGroup = currentPos.pos.next();
+ currentPos.length = currentGroup.mChars.length;
+ for (int i : currentGroup.mChars)
+ mCurrentString.append(Character.toChars(i));
+ if (null != currentGroup.mChildren) {
+ currentPos = new Position(currentGroup.mChildren.mData);
+ mPositions.addLast(currentPos);
+ }
+ if (currentGroup.mFrequency >= 0)
+ return new Word(mCurrentString.toString(), currentGroup.mFrequency,
+ currentGroup.mShortcutTargets, currentGroup.mBigrams);
+ } else {
+ mPositions.removeLast();
+ currentPos = mPositions.getLast();
+ mCurrentString.setLength(mCurrentString.length() - mPositions.getLast().length);
+ }
+ } while(true);
+ }
+
+ @Override
+ public void remove() {
+ throw new UnsupportedOperationException("Unsupported yet");
+ }
+
+ }
+
+ /**
+ * Method to return an iterator.
+ *
+ * This method enables Java's enhanced for loop. With this you can have a FusionDictionary x
+ * and say : for (Word w : x) {}
+ */
+ @Override
+ public Iterator<Word> iterator() {
+ return new DictionaryIterator(mRoot.mData);
+ }
+}