diff options
Diffstat (limited to 'native/jni/src/proximity_info_state_utils.cpp')
-rw-r--r-- | native/jni/src/proximity_info_state_utils.cpp | 484 |
1 files changed, 484 insertions, 0 deletions
diff --git a/native/jni/src/proximity_info_state_utils.cpp b/native/jni/src/proximity_info_state_utils.cpp new file mode 100644 index 000000000..146ce0545 --- /dev/null +++ b/native/jni/src/proximity_info_state_utils.cpp @@ -0,0 +1,484 @@ +/* + * Copyright (C) 2013 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include <vector> + +#include "geometry_utils.h" +#include "proximity_info.h" +#include "proximity_info_params.h" +#include "proximity_info_state_utils.h" + +namespace latinime { +/* static */ int ProximityInfoStateUtils::updateTouchPoints(const int mostCommonKeyWidth, + const ProximityInfo *const proximityInfo, const int maxPointToKeyLength, + const int *const inputProximities, + const int *const inputXCoordinates, const int *const inputYCoordinates, + const int *const times, const int *const pointerIds, const int inputSize, + const bool isGeometric, const int pointerId, const int pushTouchPointStartIndex, + std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs, + std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache, + std::vector<int> *sampledInputIndice) { + if (DEBUG_SAMPLING_POINTS) { + if (times) { + for (int i = 0; i < inputSize; ++i) { + AKLOGI("(%d) x %d, y %d, time %d", + i, xCoordinates[i], yCoordinates[i], times[i]); + } + } + } +#ifdef DO_ASSERT_TEST + if (times) { + for (int i = 0; i < inputSize; ++i) { + if (i > 0) { + ASSERT(times[i] >= times[i - 1]); + } + } + } +#endif + const bool proximityOnly = !isGeometric + && (inputXCoordinates[0] < 0 || inputYCoordinates[0] < 0); + int lastInputIndex = pushTouchPointStartIndex; + for (int i = lastInputIndex; i < inputSize; ++i) { + const int pid = pointerIds ? pointerIds[i] : 0; + if (pointerId == pid) { + lastInputIndex = i; + } + } + if (DEBUG_GEO_FULL) { + AKLOGI("Init ProximityInfoState: last input index = %d", lastInputIndex); + } + // Working space to save near keys distances for current, prev and prevprev input point. + NearKeysDistanceMap nearKeysDistances[3]; + // These pointers are swapped for each inputs points. + NearKeysDistanceMap *currentNearKeysDistances = &nearKeysDistances[0]; + NearKeysDistanceMap *prevNearKeysDistances = &nearKeysDistances[1]; + NearKeysDistanceMap *prevPrevNearKeysDistances = &nearKeysDistances[2]; + // "sumAngle" is accumulated by each angle of input points. And when "sumAngle" exceeds + // the threshold we save that point, reset sumAngle. This aims to keep the figure of + // the curve. + float sumAngle = 0.0f; + + for (int i = pushTouchPointStartIndex; i <= lastInputIndex; ++i) { + // Assuming pointerId == 0 if pointerIds is null. + const int pid = pointerIds ? pointerIds[i] : 0; + if (DEBUG_GEO_FULL) { + AKLOGI("Init ProximityInfoState: (%d)PID = %d", i, pid); + } + if (pointerId == pid) { + const int c = isGeometric ? + NOT_A_COORDINATE : getPrimaryCodePointAt(inputProximities, i); + const int x = proximityOnly ? NOT_A_COORDINATE : inputXCoordinates[i]; + const int y = proximityOnly ? NOT_A_COORDINATE : inputYCoordinates[i]; + const int time = times ? times[i] : -1; + + if (i > 1) { + const float prevAngle = getAngle( + inputXCoordinates[i - 2], inputYCoordinates[i - 2], + inputXCoordinates[i - 1], inputYCoordinates[i - 1]); + const float currentAngle = + getAngle(inputXCoordinates[i - 1], inputYCoordinates[i - 1], x, y); + sumAngle += getAngleDiff(prevAngle, currentAngle); + } + + if (pushTouchPoint(mostCommonKeyWidth, proximityInfo, maxPointToKeyLength, + i, c, x, y, time, isGeometric /* do sampling */, + i == lastInputIndex, sumAngle, currentNearKeysDistances, + prevNearKeysDistances, prevPrevNearKeysDistances, + sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache, + sampledInputIndice)) { + // Previous point information was popped. + NearKeysDistanceMap *tmp = prevNearKeysDistances; + prevNearKeysDistances = currentNearKeysDistances; + currentNearKeysDistances = tmp; + } else { + NearKeysDistanceMap *tmp = prevPrevNearKeysDistances; + prevPrevNearKeysDistances = prevNearKeysDistances; + prevNearKeysDistances = currentNearKeysDistances; + currentNearKeysDistances = tmp; + sumAngle = 0.0f; + } + } + } + return sampledInputXs->size(); +} + +/* static */ const int *ProximityInfoStateUtils::getProximityCodePointsAt( + const int *const inputProximities, const int index) { + return inputProximities + (index * MAX_PROXIMITY_CHARS_SIZE_INTERNAL); +} + +/* static */ int ProximityInfoStateUtils::getPrimaryCodePointAt( + const int *const inputProximities, const int index) { + return getProximityCodePointsAt(inputProximities, index)[0]; +} + +/* static */ void ProximityInfoStateUtils::popInputData(std::vector<int> *sampledInputXs, + std::vector<int> *sampledInputYs, std::vector<int> *sampledInputTimes, + std::vector<int> *sampledLengthCache, std::vector<int> *sampledInputIndice) { + sampledInputXs->pop_back(); + sampledInputYs->pop_back(); + sampledInputTimes->pop_back(); + sampledLengthCache->pop_back(); + sampledInputIndice->pop_back(); +} + +/* static */ float ProximityInfoStateUtils::refreshSpeedRates(const int inputSize, + const int *const xCoordinates, const int *const yCoordinates, const int *const times, + const int lastSavedInputSize, const int sampledInputSize, + const std::vector<int> *const sampledInputXs, + const std::vector<int> *const sampledInputYs, + const std::vector<int> *const sampledInputTimes, + const std::vector<int> *const sampledLengthCache, + const std::vector<int> *const sampledInputIndice, std::vector<float> *sampledSpeedRates, + std::vector<float> *sampledDirections) { + // Relative speed calculation. + const int sumDuration = sampledInputTimes->back() - sampledInputTimes->front(); + const int sumLength = sampledLengthCache->back() - sampledLengthCache->front(); + const float averageSpeed = static_cast<float>(sumLength) / static_cast<float>(sumDuration); + sampledSpeedRates->resize(sampledInputSize); + for (int i = lastSavedInputSize; i < sampledInputSize; ++i) { + const int index = (*sampledInputIndice)[i]; + int length = 0; + int duration = 0; + + // Calculate velocity by using distances and durations of + // NUM_POINTS_FOR_SPEED_CALCULATION points for both forward and backward. + static const int NUM_POINTS_FOR_SPEED_CALCULATION = 2; + for (int j = index; j < min(inputSize - 1, index + NUM_POINTS_FOR_SPEED_CALCULATION); + ++j) { + if (i < sampledInputSize - 1 && j >= (*sampledInputIndice)[i + 1]) { + break; + } + length += getDistanceInt(xCoordinates[j], yCoordinates[j], + xCoordinates[j + 1], yCoordinates[j + 1]); + duration += times[j + 1] - times[j]; + } + for (int j = index - 1; j >= max(0, index - NUM_POINTS_FOR_SPEED_CALCULATION); --j) { + if (i > 0 && j < (*sampledInputIndice)[i - 1]) { + break; + } + // TODO: use mLengthCache instead? + length += getDistanceInt(xCoordinates[j], yCoordinates[j], + xCoordinates[j + 1], yCoordinates[j + 1]); + duration += times[j + 1] - times[j]; + } + if (duration == 0 || sumDuration == 0) { + // Cannot calculate speed; thus, it gives an average value (1.0); + (*sampledSpeedRates)[i] = 1.0f; + } else { + const float speed = static_cast<float>(length) / static_cast<float>(duration); + (*sampledSpeedRates)[i] = speed / averageSpeed; + } + } + + // Direction calculation. + sampledDirections->resize(sampledInputSize - 1); + for (int i = max(0, lastSavedInputSize - 1); i < sampledInputSize - 1; ++i) { + (*sampledDirections)[i] = getDirection(sampledInputXs, sampledInputYs, i, i + 1); + } + return averageSpeed; +} + +/* static */ void ProximityInfoStateUtils::refreshBeelineSpeedRates(const int mostCommonKeyWidth, + const float averageSpeed, const int inputSize, const int *const xCoordinates, + const int *const yCoordinates, const int *times, const int sampledInputSize, + const std::vector<int> *const sampledInputXs, + const std::vector<int> *const sampledInputYs, const std::vector<int> *const inputIndice, + std::vector<int> *beelineSpeedPercentiles) { + if (DEBUG_SAMPLING_POINTS) { + AKLOGI("--- refresh beeline speed rates"); + } + beelineSpeedPercentiles->resize(sampledInputSize); + for (int i = 0; i < sampledInputSize; ++i) { + (*beelineSpeedPercentiles)[i] = static_cast<int>(calculateBeelineSpeedRate( + mostCommonKeyWidth, averageSpeed, i, inputSize, xCoordinates, yCoordinates, times, + sampledInputSize, sampledInputXs, sampledInputYs, inputIndice) * MAX_PERCENTILE); + } +} + +/* static */float ProximityInfoStateUtils::getDirection( + const std::vector<int> *const sampledInputXs, + const std::vector<int> *const sampledInputYs, const int index0, const int index1) { + ASSERT(sampledInputXs && sampledInputYs); + const int sampledInputSize =sampledInputXs->size(); + if (index0 < 0 || index0 > sampledInputSize - 1) { + return 0.0f; + } + if (index1 < 0 || index1 > sampledInputSize - 1) { + return 0.0f; + } + const int x1 = (*sampledInputXs)[index0]; + const int y1 = (*sampledInputYs)[index0]; + const int x2 = (*sampledInputXs)[index1]; + const int y2 = (*sampledInputYs)[index1]; + return getAngle(x1, y1, x2, y2); +} + +// Calculating point to key distance for all near keys and returning the distance between +// the given point and the nearest key position. +/* static */ float ProximityInfoStateUtils::updateNearKeysDistances( + const ProximityInfo *const proximityInfo, const float maxPointToKeyLength, const int x, + const int y, NearKeysDistanceMap *const currentNearKeysDistances) { + static const float NEAR_KEY_THRESHOLD = 2.0f; + + currentNearKeysDistances->clear(); + const int keyCount = proximityInfo->getKeyCount(); + float nearestKeyDistance = maxPointToKeyLength; + for (int k = 0; k < keyCount; ++k) { + const float dist = proximityInfo->getNormalizedSquaredDistanceFromCenterFloatG(k, x, y); + if (dist < NEAR_KEY_THRESHOLD) { + currentNearKeysDistances->insert(std::pair<int, float>(k, dist)); + } + if (nearestKeyDistance > dist) { + nearestKeyDistance = dist; + } + } + return nearestKeyDistance; +} + +// Check if previous point is at local minimum position to near keys. +/* static */ bool ProximityInfoStateUtils::isPrevLocalMin( + const NearKeysDistanceMap *const currentNearKeysDistances, + const NearKeysDistanceMap *const prevNearKeysDistances, + const NearKeysDistanceMap *const prevPrevNearKeysDistances) { + static const float MARGIN = 0.01f; + + for (NearKeysDistanceMap::const_iterator it = prevNearKeysDistances->begin(); + it != prevNearKeysDistances->end(); ++it) { + NearKeysDistanceMap::const_iterator itPP = prevPrevNearKeysDistances->find(it->first); + NearKeysDistanceMap::const_iterator itC = currentNearKeysDistances->find(it->first); + if ((itPP == prevPrevNearKeysDistances->end() || itPP->second > it->second + MARGIN) + && (itC == currentNearKeysDistances->end() || itC->second > it->second + MARGIN)) { + return true; + } + } + return false; +} + +// Calculating a point score that indicates usefulness of the point. +/* static */ float ProximityInfoStateUtils::getPointScore(const int mostCommonKeyWidth, + const int x, const int y, const int time, const bool lastPoint, const float nearest, + const float sumAngle, const NearKeysDistanceMap *const currentNearKeysDistances, + const NearKeysDistanceMap *const prevNearKeysDistances, + const NearKeysDistanceMap *const prevPrevNearKeysDistances, + std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs) { + static const int DISTANCE_BASE_SCALE = 100; + static const float NEAR_KEY_THRESHOLD = 0.6f; + static const int CORNER_CHECK_DISTANCE_THRESHOLD_SCALE = 25; + static const float NOT_LOCALMIN_DISTANCE_SCORE = -1.0f; + static const float LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE = 1.0f; + static const float CORNER_ANGLE_THRESHOLD = M_PI_F * 2.0f / 3.0f; + static const float CORNER_SUM_ANGLE_THRESHOLD = M_PI_F / 4.0f; + static const float CORNER_SCORE = 1.0f; + + const size_t size = sampledInputXs->size(); + // If there is only one point, add this point. Besides, if the previous point's distance map + // is empty, we re-compute nearby keys distances from the current point. + // Note that the current point is the first point in the incremental input that needs to + // be re-computed. + if (size <= 1 || prevNearKeysDistances->empty()) { + return 0.0f; + } + + const int baseSampleRate = mostCommonKeyWidth; + const int distPrev = getDistanceInt(sampledInputXs->back(), sampledInputYs->back(), + (*sampledInputXs)[size - 2], (*sampledInputYs)[size - 2]) * DISTANCE_BASE_SCALE; + float score = 0.0f; + + // Location + if (!isPrevLocalMin(currentNearKeysDistances, prevNearKeysDistances, + prevPrevNearKeysDistances)) { + score += NOT_LOCALMIN_DISTANCE_SCORE; + } else if (nearest < NEAR_KEY_THRESHOLD) { + // Promote points nearby keys + score += LOCALMIN_DISTANCE_AND_NEAR_TO_KEY_SCORE; + } + // Angle + const float angle1 = getAngle(x, y, sampledInputXs->back(), sampledInputYs->back()); + const float angle2 = getAngle(sampledInputXs->back(), sampledInputYs->back(), + (*sampledInputXs)[size - 2], (*sampledInputYs)[size - 2]); + const float angleDiff = getAngleDiff(angle1, angle2); + + // Save corner + if (distPrev > baseSampleRate * CORNER_CHECK_DISTANCE_THRESHOLD_SCALE + && (sumAngle > CORNER_SUM_ANGLE_THRESHOLD || angleDiff > CORNER_ANGLE_THRESHOLD)) { + score += CORNER_SCORE; + } + return score; +} + +// Sampling touch point and pushing information to vectors. +// Returning if previous point is popped or not. +/* static */ bool ProximityInfoStateUtils::pushTouchPoint(const int mostCommonKeyWidth, + const ProximityInfo *const proximityInfo, const int maxPointToKeyLength, + const int inputIndex, const int nodeCodePoint, int x, int y, + const int time, const bool sample, const bool isLastPoint, const float sumAngle, + NearKeysDistanceMap *const currentNearKeysDistances, + const NearKeysDistanceMap *const prevNearKeysDistances, + const NearKeysDistanceMap *const prevPrevNearKeysDistances, + std::vector<int> *sampledInputXs, std::vector<int> *sampledInputYs, + std::vector<int> *sampledInputTimes, std::vector<int> *sampledLengthCache, + std::vector<int> *sampledInputIndice) { + static const int LAST_POINT_SKIP_DISTANCE_SCALE = 4; + + size_t size = sampledInputXs->size(); + bool popped = false; + if (nodeCodePoint < 0 && sample) { + const float nearest = updateNearKeysDistances( + proximityInfo, maxPointToKeyLength, x, y, currentNearKeysDistances); + const float score = getPointScore(mostCommonKeyWidth, x, y, time, isLastPoint, nearest, + sumAngle, currentNearKeysDistances, prevNearKeysDistances, + prevPrevNearKeysDistances, sampledInputXs, sampledInputYs); + if (score < 0) { + // Pop previous point because it would be useless. + popInputData(sampledInputXs, sampledInputYs, sampledInputTimes, sampledLengthCache, + sampledInputIndice); + size = sampledInputXs->size(); + popped = true; + } else { + popped = false; + } + // Check if the last point should be skipped. + if (isLastPoint && size > 0) { + if (getDistanceInt(x, y, sampledInputXs->back(), + sampledInputYs->back()) * LAST_POINT_SKIP_DISTANCE_SCALE + < mostCommonKeyWidth) { + // This point is not used because it's too close to the previous point. + if (DEBUG_GEO_FULL) { + AKLOGI("p0: size = %zd, x = %d, y = %d, lx = %d, ly = %d, dist = %d, " + "width = %d", size, x, y, mSampledInputXs.back(), + mSampledInputYs.back(), ProximityInfoUtils::getDistanceInt( + x, y, mSampledInputXs.back(), mSampledInputYs.back()), + mProximityInfo->getMostCommonKeyWidth() + / LAST_POINT_SKIP_DISTANCE_SCALE); + } + return popped; + } + } + } + + if (nodeCodePoint >= 0 && (x < 0 || y < 0)) { + const int keyId = proximityInfo->getKeyIndexOf(nodeCodePoint); + if (keyId >= 0) { + x = proximityInfo->getKeyCenterXOfKeyIdG(keyId); + y = proximityInfo->getKeyCenterYOfKeyIdG(keyId); + } + } + + // Pushing point information. + if (size > 0) { + sampledLengthCache->push_back( + sampledLengthCache->back() + getDistanceInt( + x, y, sampledInputXs->back(), sampledInputYs->back())); + } else { + sampledLengthCache->push_back(0); + } + sampledInputXs->push_back(x); + sampledInputYs->push_back(y); + sampledInputTimes->push_back(time); + sampledInputIndice->push_back(inputIndex); + if (DEBUG_GEO_FULL) { + AKLOGI("pushTouchPoint: x = %03d, y = %03d, time = %d, index = %d, popped ? %01d", + x, y, time, inputIndex, popped); + } + return popped; +} + +/* static */ float ProximityInfoStateUtils::calculateBeelineSpeedRate(const int mostCommonKeyWidth, + const float averageSpeed, const int id, const int inputSize, const int *const xCoordinates, + const int *const yCoordinates, const int *times, const int sampledInputSize, + const std::vector<int> *const sampledInputXs, + const std::vector<int> *const sampledInputYs, const std::vector<int> *const inputIndice) { + if (sampledInputSize <= 0 || averageSpeed < 0.001f) { + if (DEBUG_SAMPLING_POINTS) { + AKLOGI("--- invalid state: cancel. size = %d, ave = %f", + mSampledInputSize, mAverageSpeed); + } + return 1.0f; + } + const int lookupRadius = mostCommonKeyWidth + * ProximityInfoParams::LOOKUP_RADIUS_PERCENTILE / MAX_PERCENTILE; + const int x0 = (*sampledInputXs)[id]; + const int y0 = (*sampledInputYs)[id]; + const int actualInputIndex = (*inputIndice)[id]; + int tempTime = 0; + int tempBeelineDistance = 0; + int start = actualInputIndex; + // lookup forward + while (start > 0 && tempBeelineDistance < lookupRadius) { + tempTime += times[start] - times[start - 1]; + --start; + tempBeelineDistance = getDistanceInt(x0, y0, xCoordinates[start], yCoordinates[start]); + } + // Exclusive unless this is an edge point + if (start > 0 && start < actualInputIndex) { + ++start; + } + tempTime= 0; + tempBeelineDistance = 0; + int end = actualInputIndex; + // lookup backward + while (end < (inputSize - 1) && tempBeelineDistance < lookupRadius) { + tempTime += times[end + 1] - times[end]; + ++end; + tempBeelineDistance = getDistanceInt(x0, y0, xCoordinates[end], yCoordinates[end]); + } + // Exclusive unless this is an edge point + if (end > actualInputIndex && end < (inputSize - 1)) { + --end; + } + + if (start >= end) { + if (DEBUG_DOUBLE_LETTER) { + AKLOGI("--- double letter: start == end %d", start); + } + return 1.0f; + } + + const int x2 = xCoordinates[start]; + const int y2 = yCoordinates[start]; + const int x3 = xCoordinates[end]; + const int y3 = yCoordinates[end]; + const int beelineDistance = getDistanceInt(x2, y2, x3, y3); + int adjustedStartTime = times[start]; + if (start == 0 && actualInputIndex == 0 && inputSize > 1) { + adjustedStartTime += ProximityInfoParams::FIRST_POINT_TIME_OFFSET_MILLIS; + } + int adjustedEndTime = times[end]; + if (end == (inputSize - 1) && inputSize > 1) { + adjustedEndTime -= ProximityInfoParams::FIRST_POINT_TIME_OFFSET_MILLIS; + } + const int time = adjustedEndTime - adjustedStartTime; + if (time <= 0) { + return 1.0f; + } + + if (time >= ProximityInfoParams::STRONG_DOUBLE_LETTER_TIME_MILLIS){ + return 0.0f; + } + if (DEBUG_DOUBLE_LETTER) { + AKLOGI("--- (%d, %d) double letter: start = %d, end = %d, dist = %d, time = %d," + " speed = %f, ave = %f, val = %f, start time = %d, end time = %d", + id, mInputIndice[id], start, end, beelineDistance, time, + (static_cast<float>(beelineDistance) / static_cast<float>(time)), mAverageSpeed, + ((static_cast<float>(beelineDistance) / static_cast<float>(time)) + / mAverageSpeed), adjustedStartTime, adjustedEndTime); + } + // Offset 1% + // TODO: Detect double letter more smartly + return 0.01f + static_cast<float>(beelineDistance) / static_cast<float>(time) / averageSpeed; +} +} // namespace latinime |