aboutsummaryrefslogtreecommitdiffstats
path: root/java/src/com/android/inputmethod/latin/Suggest.java
blob: cfb691021efead45df4d0ba151c5bd5788789bf3 (about) (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
/*
 * Copyright (C) 2008 The Android Open Source Project
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */

package com.android.inputmethod.latin;

import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;

import android.content.Context;
import android.text.AutoText;
import android.text.TextUtils;
import android.util.Log;
import android.view.View;

/**
 * This class loads a dictionary and provides a list of suggestions for a given sequence of 
 * characters. This includes corrections and completions.
 * @hide pending API Council Approval
 */
public class Suggest implements Dictionary.WordCallback {

    private static final String TAG = "Suggest";

    public static final int APPROX_MAX_WORD_LENGTH = 32;

    public static final int CORRECTION_NONE = 0;
    public static final int CORRECTION_BASIC = 1;
    public static final int CORRECTION_FULL = 2;
    public static final int CORRECTION_FULL_BIGRAM = 3;

    /**
     * Words that appear in both bigram and unigram data gets multiplier ranging from
     * BIGRAM_MULTIPLIER_MIN to BIGRAM_MULTIPLIER_MAX depending on the frequency score from
     * bigram data.
     */
    public static final double BIGRAM_MULTIPLIER_MIN = 1.2;
    public static final double BIGRAM_MULTIPLIER_MAX = 1.5;

    /**
     * Maximum possible bigram frequency. Will depend on how many bits are being used in data
     * structure. Maximum bigram freqeuncy will get the BIGRAM_MULTIPLIER_MAX as the multiplier.
     */
    public static final int MAXIMUM_BIGRAM_FREQUENCY = 127;

    public static final int DIC_USER_TYPED = 0;
    public static final int DIC_MAIN = 1;
    public static final int DIC_USER = 2;
    public static final int DIC_AUTO = 3;
    public static final int DIC_CONTACTS = 4;
    // If you add a type of dictionary, increment DIC_TYPE_LAST_ID
    public static final int DIC_TYPE_LAST_ID = 4;

    static final int LARGE_DICTIONARY_THRESHOLD = 200 * 1000;

    private BinaryDictionary mMainDict;

    private Dictionary mUserDictionary;

    private Dictionary mAutoDictionary;

    private Dictionary mContactsDictionary;

    private Dictionary mUserBigramDictionary;

    private int mPrefMaxSuggestions = 12;
    private int mPrefMaxBigrams = 255;

    private boolean mAutoTextEnabled;

    private int[] mPriorities = new int[mPrefMaxSuggestions];
    private int[] mBigramPriorities = new int[mPrefMaxBigrams];

    // Handle predictive correction for only the first 1280 characters for performance reasons
    // If we support scripts that need latin characters beyond that, we should probably use some
    // kind of a sparse array or language specific list with a mapping lookup table.
    // 1280 is the size of the BASE_CHARS array in ExpandableDictionary, which is a basic set of
    // latin characters.
    private int[] mNextLettersFrequencies = new int[1280];
    private ArrayList<CharSequence> mSuggestions = new ArrayList<CharSequence>();
    private ArrayList<CharSequence> mBigramSuggestions  = new ArrayList<CharSequence>();
    private ArrayList<CharSequence> mStringPool = new ArrayList<CharSequence>();
    private boolean mHaveCorrection;
    private CharSequence mOriginalWord;
    private String mLowerOriginalWord;
    private boolean mCapitalize;

    private int mCorrectionMode = CORRECTION_BASIC;

    public Suggest(Context context, int[] dictionaryResId) {
        mMainDict = new BinaryDictionary(context, dictionaryResId, DIC_MAIN);
        initPool();
    }

    public Suggest(Context context, ByteBuffer byteBuffer) {
        mMainDict = new BinaryDictionary(context, byteBuffer, DIC_MAIN);
        initPool();
    }

    private void initPool() {
        for (int i = 0; i < mPrefMaxSuggestions; i++) {
            StringBuilder sb = new StringBuilder(getApproxMaxWordLength());
            mStringPool.add(sb);
        }
    }

    public void setAutoTextEnabled(boolean enabled) {
        mAutoTextEnabled = enabled;
    }

    public int getCorrectionMode() {
        return mCorrectionMode;
    }

    public void setCorrectionMode(int mode) {
        mCorrectionMode = mode;
    }

    public boolean hasMainDictionary() {
        return mMainDict.getSize() > LARGE_DICTIONARY_THRESHOLD;
    }

    public int getApproxMaxWordLength() {
        return APPROX_MAX_WORD_LENGTH;
    }

    /**
     * Sets an optional user dictionary resource to be loaded. The user dictionary is consulted
     * before the main dictionary, if set.
     */
    public void setUserDictionary(Dictionary userDictionary) {
        mUserDictionary = userDictionary;
    }

    /**
     * Sets an optional contacts dictionary resource to be loaded.
     */
    public void setContactsDictionary(Dictionary userDictionary) {
        mContactsDictionary = userDictionary;
    }
    
    public void setAutoDictionary(Dictionary autoDictionary) {
        mAutoDictionary = autoDictionary;
    }

    public void setUserBigramDictionary(Dictionary userBigramDictionary) {
        mUserBigramDictionary = userBigramDictionary;
    }

    /**
     * Number of suggestions to generate from the input key sequence. This has
     * to be a number between 1 and 100 (inclusive).
     * @param maxSuggestions
     * @throws IllegalArgumentException if the number is out of range
     */
    public void setMaxSuggestions(int maxSuggestions) {
        if (maxSuggestions < 1 || maxSuggestions > 100) {
            throw new IllegalArgumentException("maxSuggestions must be between 1 and 100");
        }
        mPrefMaxSuggestions = maxSuggestions;
        mPriorities = new int[mPrefMaxSuggestions];
        mBigramPriorities = new int[mPrefMaxBigrams];
        collectGarbage(mSuggestions, mPrefMaxSuggestions);
        while (mStringPool.size() < mPrefMaxSuggestions) {
            StringBuilder sb = new StringBuilder(getApproxMaxWordLength());
            mStringPool.add(sb);
        }
    }

    private boolean haveSufficientCommonality(String original, CharSequence suggestion) {
        final int originalLength = original.length();
        final int suggestionLength = suggestion.length();
        final int minLength = Math.min(originalLength, suggestionLength);
        if (minLength <= 2) return true;
        int matching = 0;
        int lessMatching = 0; // Count matches if we skip one character
        int i;
        for (i = 0; i < minLength; i++) {
            final char origChar = ExpandableDictionary.toLowerCase(original.charAt(i));
            if (origChar == ExpandableDictionary.toLowerCase(suggestion.charAt(i))) {
                matching++;
                lessMatching++;
            } else if (i + 1 < suggestionLength
                    && origChar == ExpandableDictionary.toLowerCase(suggestion.charAt(i + 1))) {
                lessMatching++;
            }
        }
        matching = Math.max(matching, lessMatching);

        if (minLength <= 4) {
            return matching >= 2;
        } else {
            return matching > minLength / 2;
        }
    }

    /**
     * Returns a list of words that match the list of character codes passed in.
     * This list will be overwritten the next time this function is called.
     * @param view a view for retrieving the context for AutoText
     * @param wordComposer contains what is currently being typed
     * @param prevWordForBigram previous word (used only for bigram)
     * @return list of suggestions.
     */
    public List<CharSequence> getSuggestions(View view, WordComposer wordComposer, 
            boolean includeTypedWordIfValid, CharSequence prevWordForBigram) {
        LatinImeLogger.onStartSuggestion(prevWordForBigram);
        mHaveCorrection = false;
        mCapitalize = wordComposer.isCapitalized();
        collectGarbage(mSuggestions, mPrefMaxSuggestions);
        Arrays.fill(mPriorities, 0);
        Arrays.fill(mNextLettersFrequencies, 0);

        // Save a lowercase version of the original word
        mOriginalWord = wordComposer.getTypedWord();
        if (mOriginalWord != null) {
            final String mOriginalWordString = mOriginalWord.toString();
            mOriginalWord = mOriginalWordString;
            mLowerOriginalWord = mOriginalWordString.toLowerCase();
            // Treating USER_TYPED as UNIGRAM suggestion for logging now.
            LatinImeLogger.onAddSuggestedWord(mOriginalWordString, Suggest.DIC_USER_TYPED,
                    Dictionary.DataType.UNIGRAM);
        } else {
            mLowerOriginalWord = "";
        }

        if (wordComposer.size() == 1 && (mCorrectionMode == CORRECTION_FULL_BIGRAM
                || mCorrectionMode == CORRECTION_BASIC)) {
            // At first character typed, search only the bigrams
            Arrays.fill(mBigramPriorities, 0);
            collectGarbage(mBigramSuggestions, mPrefMaxBigrams);

            if (!TextUtils.isEmpty(prevWordForBigram)) {
                CharSequence lowerPrevWord = prevWordForBigram.toString().toLowerCase();
                if (mMainDict.isValidWord(lowerPrevWord)) {
                    prevWordForBigram = lowerPrevWord;
                }
                if (mUserBigramDictionary != null) {
                    mUserBigramDictionary.getBigrams(wordComposer, prevWordForBigram, this,
                            mNextLettersFrequencies);
                }
                if (mContactsDictionary != null) {
                    mContactsDictionary.getBigrams(wordComposer, prevWordForBigram, this,
                            mNextLettersFrequencies);
                }
                if (mMainDict != null) {
                    mMainDict.getBigrams(wordComposer, prevWordForBigram, this,
                            mNextLettersFrequencies);
                }
                char currentChar = wordComposer.getTypedWord().charAt(0);
                char currentCharUpper = Character.toUpperCase(currentChar);
                int count = 0;
                int bigramSuggestionSize = mBigramSuggestions.size();
                for (int i = 0; i < bigramSuggestionSize; i++) {
                    if (mBigramSuggestions.get(i).charAt(0) == currentChar
                            || mBigramSuggestions.get(i).charAt(0) == currentCharUpper) {
                        int poolSize = mStringPool.size();
                        StringBuilder sb = poolSize > 0 ?
                                (StringBuilder) mStringPool.remove(poolSize - 1)
                                : new StringBuilder(getApproxMaxWordLength());
                        sb.setLength(0);
                        sb.append(mBigramSuggestions.get(i));
                        mSuggestions.add(count++, sb);
                        if (count > mPrefMaxSuggestions) break;
                    }
                }
            }

        } else if (wordComposer.size() > 1) {
            // At second character typed, search the unigrams (scores being affected by bigrams)
            if (mUserDictionary != null || mContactsDictionary != null) {
                if (mUserDictionary != null) {
                    mUserDictionary.getWords(wordComposer, this, mNextLettersFrequencies);
                }
                if (mContactsDictionary != null) {
                    mContactsDictionary.getWords(wordComposer, this, mNextLettersFrequencies);
                }

                if (mSuggestions.size() > 0 && isValidWord(mOriginalWord)
                        && (mCorrectionMode == CORRECTION_FULL
                        || mCorrectionMode == CORRECTION_FULL_BIGRAM)) {
                    mHaveCorrection = true;
                }
            }
            mMainDict.getWords(wordComposer, this, mNextLettersFrequencies);
            if ((mCorrectionMode == CORRECTION_FULL || mCorrectionMode == CORRECTION_FULL_BIGRAM)
                    && mSuggestions.size() > 0) {
                mHaveCorrection = true;
            }
        }
        if (mOriginalWord != null) {
            mSuggestions.add(0, mOriginalWord.toString());
        }

        // Check if the first suggestion has a minimum number of characters in common
        if (wordComposer.size() > 1 && mSuggestions.size() > 1
                && (mCorrectionMode == CORRECTION_FULL
                || mCorrectionMode == CORRECTION_FULL_BIGRAM)) {
            if (!haveSufficientCommonality(mLowerOriginalWord, mSuggestions.get(1))) {
                mHaveCorrection = false;
            }
        }
        if (mAutoTextEnabled) {
            int i = 0;
            int max = 6;
            // Don't autotext the suggestions from the dictionaries
            if (mCorrectionMode == CORRECTION_BASIC) max = 1;
            while (i < mSuggestions.size() && i < max) {
                String suggestedWord = mSuggestions.get(i).toString().toLowerCase();
                CharSequence autoText =
                        AutoText.get(suggestedWord, 0, suggestedWord.length(), view);
                // Is there an AutoText correction?
                boolean canAdd = autoText != null;
                // Is that correction already the current prediction (or original word)?
                canAdd &= !TextUtils.equals(autoText, mSuggestions.get(i));
                // Is that correction already the next predicted word?
                if (canAdd && i + 1 < mSuggestions.size() && mCorrectionMode != CORRECTION_BASIC) {
                    canAdd &= !TextUtils.equals(autoText, mSuggestions.get(i + 1));
                }
                if (canAdd) {
                    mHaveCorrection = true;
                    mSuggestions.add(i + 1, autoText);
                    i++;
                }
                i++;
            }
        }
        removeDupes();
        return mSuggestions;
    }

    public int[] getNextLettersFrequencies() {
        return mNextLettersFrequencies;
    }

    private void removeDupes() {
        final ArrayList<CharSequence> suggestions = mSuggestions;
        if (suggestions.size() < 2) return;
        int i = 1;
        // Don't cache suggestions.size(), since we may be removing items
        while (i < suggestions.size()) {
            final CharSequence cur = suggestions.get(i);
            // Compare each candidate with each previous candidate
            for (int j = 0; j < i; j++) {
                CharSequence previous = suggestions.get(j);
                if (TextUtils.equals(cur, previous)) {
                    removeFromSuggestions(i);
                    i--;
                    break;
                }
            }
            i++;
        }
    }

    private void removeFromSuggestions(int index) {
        CharSequence garbage = mSuggestions.remove(index);
        if (garbage != null && garbage instanceof StringBuilder) {
            mStringPool.add(garbage);
        }
    }

    public boolean hasMinimalCorrection() {
        return mHaveCorrection;
    }

    private boolean compareCaseInsensitive(final String mLowerOriginalWord, 
            final char[] word, final int offset, final int length) {
        final int originalLength = mLowerOriginalWord.length();
        if (originalLength == length && Character.isUpperCase(word[offset])) {
            for (int i = 0; i < originalLength; i++) {
                if (mLowerOriginalWord.charAt(i) != Character.toLowerCase(word[offset+i])) {
                    return false;
                }
            }
            return true;
        }
        return false;
    }

    public boolean addWord(final char[] word, final int offset, final int length, int freq,
            final int dicTypeId, final Dictionary.DataType dataType) {
        Dictionary.DataType dataTypeForLog = dataType;
        ArrayList<CharSequence> suggestions;
        int[] priorities;
        int prefMaxSuggestions;
        if(dataType == Dictionary.DataType.BIGRAM) {
            suggestions = mBigramSuggestions;
            priorities = mBigramPriorities;
            prefMaxSuggestions = mPrefMaxBigrams;
        } else {
            suggestions = mSuggestions;
            priorities = mPriorities;
            prefMaxSuggestions = mPrefMaxSuggestions;
        }

        int pos = 0;

        // Check if it's the same word, only caps are different
        if (compareCaseInsensitive(mLowerOriginalWord, word, offset, length)) {
            pos = 0;
        } else {
            if (dataType == Dictionary.DataType.UNIGRAM) {
                // Check if the word was already added before (by bigram data)
                int bigramSuggestion = searchBigramSuggestion(word,offset,length);
                if(bigramSuggestion >= 0) {
                    dataTypeForLog = Dictionary.DataType.BIGRAM;
                    // turn freq from bigram into multiplier specified above
                    double multiplier = (((double) mBigramPriorities[bigramSuggestion])
                            / MAXIMUM_BIGRAM_FREQUENCY)
                            * (BIGRAM_MULTIPLIER_MAX - BIGRAM_MULTIPLIER_MIN)
                            + BIGRAM_MULTIPLIER_MIN;
                    /* Log.d(TAG,"bigram num: " + bigramSuggestion
                            + "  wordB: " + mBigramSuggestions.get(bigramSuggestion).toString()
                            + "  currentPriority: " + freq + "  bigramPriority: "
                            + mBigramPriorities[bigramSuggestion]
                            + "  multiplier: " + multiplier); */
                    freq = (int)Math.round((freq * multiplier));
                }
            }

            // Check the last one's priority and bail
            if (priorities[prefMaxSuggestions - 1] >= freq) return true;
            while (pos < prefMaxSuggestions) {
                if (priorities[pos] < freq
                        || (priorities[pos] == freq && length < suggestions.get(pos).length())) {
                    break;
                }
                pos++;
            }
        }

        if (pos >= prefMaxSuggestions) {
            return true;
        }

        System.arraycopy(priorities, pos, priorities, pos + 1,
                prefMaxSuggestions - pos - 1);
        priorities[pos] = freq;
        int poolSize = mStringPool.size();
        StringBuilder sb = poolSize > 0 ? (StringBuilder) mStringPool.remove(poolSize - 1) 
                : new StringBuilder(getApproxMaxWordLength());
        sb.setLength(0);
        if (mCapitalize) {
            sb.append(Character.toUpperCase(word[offset]));
            if (length > 1) {
                sb.append(word, offset + 1, length - 1);
            }
        } else {
            sb.append(word, offset, length);
        }
        suggestions.add(pos, sb);
        if (suggestions.size() > prefMaxSuggestions) {
            CharSequence garbage = suggestions.remove(prefMaxSuggestions);
            if (garbage instanceof StringBuilder) {
                mStringPool.add(garbage);
            }
        } else {
            LatinImeLogger.onAddSuggestedWord(sb.toString(), dicTypeId, dataTypeForLog);
        }
        return true;
    }

    private int searchBigramSuggestion(final char[] word, final int offset, final int length) {
        // TODO This is almost O(n^2). Might need fix.
        // search whether the word appeared in bigram data
        int bigramSuggestSize = mBigramSuggestions.size();
        for(int i = 0; i < bigramSuggestSize; i++) {
            if(mBigramSuggestions.get(i).length() == length) {
                boolean chk = true;
                for(int j = 0; j < length; j++) {
                    if(mBigramSuggestions.get(i).charAt(j) != word[offset+j]) {
                        chk = false;
                        break;
                    }
                }
                if(chk) return i;
            }
        }

        return -1;
    }

    public boolean isValidWord(final CharSequence word) {
        if (word == null || word.length() == 0) {
            return false;
        }
        return mMainDict.isValidWord(word)
                || (mUserDictionary != null && mUserDictionary.isValidWord(word))
                || (mAutoDictionary != null && mAutoDictionary.isValidWord(word))
                || (mContactsDictionary != null && mContactsDictionary.isValidWord(word));
    }
    
    private void collectGarbage(ArrayList<CharSequence> suggestions, int prefMaxSuggestions) {
        int poolSize = mStringPool.size();
        int garbageSize = suggestions.size();
        while (poolSize < prefMaxSuggestions && garbageSize > 0) {
            CharSequence garbage = suggestions.get(garbageSize - 1);
            if (garbage != null && garbage instanceof StringBuilder) {
                mStringPool.add(garbage);
                poolSize++;
            }
            garbageSize--;
        }
        if (poolSize == prefMaxSuggestions + 1) {
            Log.w("Suggest", "String pool got too big: " + poolSize);
        }
        suggestions.clear();
    }

    public void close() {
        if (mMainDict != null) {
            mMainDict.close();
        }
    }
}