aboutsummaryrefslogtreecommitdiffstats
path: root/java/src/com/android/inputmethod/latin/makedict/FusionDictionary.java
blob: ee647abed6d0a907de08871cb1d2d69ac31b489d (about) (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */

package com.android.inputmethod.latin.makedict;

import com.android.inputmethod.latin.Constants;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Date;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;

/**
 * A dictionary that can fusion heads and tails of words for more compression.
 */
public final class FusionDictionary implements Iterable<Word> {
    private static final boolean DBG = MakedictLog.DBG;

    /**
     * A node of the dictionary, containing several CharGroups.
     *
     * A node is but an ordered array of CharGroups, which essentially contain all the
     * real information.
     * This class also contains fields to cache size and address, to help with binary
     * generation.
     */
    public static final class Node {
        ArrayList<CharGroup> mData;
        // To help with binary generation
        int mCachedSize = Integer.MIN_VALUE;
        int mCachedAddress = Integer.MIN_VALUE;
        int mCachedParentAddress = 0;

        public Node() {
            mData = new ArrayList<CharGroup>();
        }
        public Node(ArrayList<CharGroup> data) {
            mData = data;
        }
    }

    /**
     * A string with a frequency.
     *
     * This represents an "attribute", that is either a bigram or a shortcut.
     */
    public static final class WeightedString {
        public final String mWord;
        public int mFrequency;
        public WeightedString(String word, int frequency) {
            mWord = word;
            mFrequency = frequency;
        }

        @Override
        public int hashCode() {
            return Arrays.hashCode(new Object[] { mWord, mFrequency });
        }

        @Override
        public boolean equals(Object o) {
            if (o == this) return true;
            if (!(o instanceof WeightedString)) return false;
            WeightedString w = (WeightedString)o;
            return mWord.equals(w.mWord) && mFrequency == w.mFrequency;
        }
    }

    /**
     * A group of characters, with a frequency, shortcut targets, bigrams, and children.
     *
     * This is the central class of the in-memory representation. A CharGroup is what can
     * be seen as a traditional "trie node", except it can hold several characters at the
     * same time. A CharGroup essentially represents one or several characters in the middle
     * of the trie trie; as such, it can be a terminal, and it can have children.
     * In this in-memory representation, whether the CharGroup is a terminal or not is represented
     * in the frequency, where NOT_A_TERMINAL (= -1) means this is not a terminal and any other
     * value is the frequency of this terminal. A terminal may have non-null shortcuts and/or
     * bigrams, but a non-terminal may not. Moreover, children, if present, are null.
     */
    public static final class CharGroup {
        public static final int NOT_A_TERMINAL = -1;
        final int mChars[];
        ArrayList<WeightedString> mShortcutTargets;
        ArrayList<WeightedString> mBigrams;
        int mFrequency; // NOT_A_TERMINAL == mFrequency indicates this is not a terminal.
        Node mChildren;
        boolean mIsNotAWord; // Only a shortcut
        boolean mIsBlacklistEntry;
        // The two following members to help with binary generation
        int mCachedSize;
        int mCachedAddress;

        public CharGroup(final int[] chars, final ArrayList<WeightedString> shortcutTargets,
                final ArrayList<WeightedString> bigrams, final int frequency,
                final boolean isNotAWord, final boolean isBlacklistEntry) {
            mChars = chars;
            mFrequency = frequency;
            mShortcutTargets = shortcutTargets;
            mBigrams = bigrams;
            mChildren = null;
            mIsNotAWord = isNotAWord;
            mIsBlacklistEntry = isBlacklistEntry;
        }

        public CharGroup(final int[] chars, final ArrayList<WeightedString> shortcutTargets,
                final ArrayList<WeightedString> bigrams, final int frequency,
                final boolean isNotAWord, final boolean isBlacklistEntry, final Node children) {
            mChars = chars;
            mFrequency = frequency;
            mShortcutTargets = shortcutTargets;
            mBigrams = bigrams;
            mChildren = children;
            mIsNotAWord = isNotAWord;
            mIsBlacklistEntry = isBlacklistEntry;
        }

        public void addChild(CharGroup n) {
            if (null == mChildren) {
                mChildren = new Node();
            }
            mChildren.mData.add(n);
        }

        public boolean isTerminal() {
            return NOT_A_TERMINAL != mFrequency;
        }

        public int getFrequency() {
            return mFrequency;
        }

        public boolean getIsNotAWord() {
            return mIsNotAWord;
        }

        public boolean getIsBlacklistEntry() {
            return mIsBlacklistEntry;
        }

        public ArrayList<WeightedString> getShortcutTargets() {
            // We don't want write permission to escape outside the package, so we return a copy
            if (null == mShortcutTargets) return null;
            final ArrayList<WeightedString> copyOfShortcutTargets =
                    new ArrayList<WeightedString>(mShortcutTargets);
            return copyOfShortcutTargets;
        }

        public ArrayList<WeightedString> getBigrams() {
            // We don't want write permission to escape outside the package, so we return a copy
            if (null == mBigrams) return null;
            final ArrayList<WeightedString> copyOfBigrams = new ArrayList<WeightedString>(mBigrams);
            return copyOfBigrams;
        }

        public boolean hasSeveralChars() {
            assert(mChars.length > 0);
            return 1 < mChars.length;
        }

        /**
         * Adds a word to the bigram list. Updates the frequency if the word already
         * exists.
         */
        public void addBigram(final String word, final int frequency) {
            if (mBigrams == null) {
                mBigrams = new ArrayList<WeightedString>();
            }
            WeightedString bigram = getBigram(word);
            if (bigram != null) {
                bigram.mFrequency = frequency;
            } else {
                bigram = new WeightedString(word, frequency);
                mBigrams.add(bigram);
            }
        }

        /**
         * Gets the shortcut target for the given word. Returns null if the word is not in the
         * shortcut list.
         */
        public WeightedString getShortcut(final String word) {
            // TODO: Don't do a linear search
            if (mShortcutTargets != null) {
                final int size = mShortcutTargets.size();
                for (int i = 0; i < size; ++i) {
                    WeightedString shortcut = mShortcutTargets.get(i);
                    if (shortcut.mWord.equals(word)) {
                        return shortcut;
                    }
                }
            }
            return null;
        }

        /**
         * Gets the bigram for the given word.
         * Returns null if the word is not in the bigrams list.
         */
        public WeightedString getBigram(final String word) {
            // TODO: Don't do a linear search
            if (mBigrams != null) {
                final int size = mBigrams.size();
                for (int i = 0; i < size; ++i) {
                    WeightedString bigram = mBigrams.get(i);
                    if (bigram.mWord.equals(word)) {
                        return bigram;
                    }
                }
            }
            return null;
        }

        /**
         * Updates the CharGroup with the given properties. Adds the shortcut and bigram lists to
         * the existing ones if any. Note: unigram, bigram, and shortcut frequencies are only
         * updated if they are higher than the existing ones.
         */
        public void update(final int frequency, final ArrayList<WeightedString> shortcutTargets,
                final ArrayList<WeightedString> bigrams,
                final boolean isNotAWord, final boolean isBlacklistEntry) {
            if (frequency > mFrequency) {
                mFrequency = frequency;
            }
            if (shortcutTargets != null) {
                if (mShortcutTargets == null) {
                    mShortcutTargets = shortcutTargets;
                } else {
                    final int size = shortcutTargets.size();
                    for (int i = 0; i < size; ++i) {
                        final WeightedString shortcut = shortcutTargets.get(i);
                        final WeightedString existingShortcut = getShortcut(shortcut.mWord);
                        if (existingShortcut == null) {
                            mShortcutTargets.add(shortcut);
                        } else if (existingShortcut.mFrequency < shortcut.mFrequency) {
                            existingShortcut.mFrequency = shortcut.mFrequency;
                        }
                    }
                }
            }
            if (bigrams != null) {
                if (mBigrams == null) {
                    mBigrams = bigrams;
                } else {
                    final int size = bigrams.size();
                    for (int i = 0; i < size; ++i) {
                        final WeightedString bigram = bigrams.get(i);
                        final WeightedString existingBigram = getBigram(bigram.mWord);
                        if (existingBigram == null) {
                            mBigrams.add(bigram);
                        } else if (existingBigram.mFrequency < bigram.mFrequency) {
                            existingBigram.mFrequency = bigram.mFrequency;
                        }
                    }
                }
            }
            mIsNotAWord = isNotAWord;
            mIsBlacklistEntry = isBlacklistEntry;
        }
    }

    /**
     * Options global to the dictionary.
     */
    public static final class DictionaryOptions {
        public final boolean mGermanUmlautProcessing;
        public final boolean mFrenchLigatureProcessing;
        public final HashMap<String, String> mAttributes;
        public DictionaryOptions(final HashMap<String, String> attributes,
                final boolean germanUmlautProcessing, final boolean frenchLigatureProcessing) {
            mAttributes = attributes;
            mGermanUmlautProcessing = germanUmlautProcessing;
            mFrenchLigatureProcessing = frenchLigatureProcessing;
        }
        @Override
        public String toString() { // Convenience method
            return toString(0, false);
        }
        public String toString(final int indentCount, final boolean plumbing) {
            final StringBuilder indent = new StringBuilder();
            if (plumbing) {
                indent.append("H:");
            } else {
                for (int i = 0; i < indentCount; ++i) {
                    indent.append(" ");
                }
            }
            final StringBuilder s = new StringBuilder();
            for (final String optionKey : mAttributes.keySet()) {
                s.append(indent);
                s.append(optionKey);
                s.append(" = ");
                if ("date".equals(optionKey) && !plumbing) {
                    // Date needs a number of milliseconds, but the dictionary contains seconds
                    s.append(new Date(
                            1000 * Long.parseLong(mAttributes.get(optionKey))).toString());
                } else {
                    s.append(mAttributes.get(optionKey));
                }
                s.append("\n");
            }
            if (mGermanUmlautProcessing) {
                s.append(indent);
                s.append("Needs German umlaut processing\n");
            }
            if (mFrenchLigatureProcessing) {
                s.append(indent);
                s.append("Needs French ligature processing\n");
            }
            return s.toString();
        }
    }

    public final DictionaryOptions mOptions;
    public final Node mRoot;

    public FusionDictionary(final Node root, final DictionaryOptions options) {
        mRoot = root;
        mOptions = options;
    }

    public void addOptionAttribute(final String key, final String value) {
        mOptions.mAttributes.put(key, value);
    }

    /**
     * Helper method to convert a String to an int array.
     */
    static int[] getCodePoints(final String word) {
        // TODO: this is a copy-paste of the contents of StringUtils.toCodePointArray,
        // which is not visible from the makedict package. Factor this code.
        final char[] characters = word.toCharArray();
        final int length = characters.length;
        final int[] codePoints = new int[Character.codePointCount(characters, 0, length)];
        int codePoint = Character.codePointAt(characters, 0);
        int dsti = 0;
        for (int srci = Character.charCount(codePoint);
                srci < length; srci += Character.charCount(codePoint), ++dsti) {
            codePoints[dsti] = codePoint;
            codePoint = Character.codePointAt(characters, srci);
        }
        codePoints[dsti] = codePoint;
        return codePoints;
    }

    /**
     * Helper method to add a word as a string.
     *
     * This method adds a word to the dictionary with the given frequency. Optional
     * lists of bigrams and shortcuts can be passed here. For each word inside,
     * they will be added to the dictionary as necessary.
     *
     * @param word the word to add.
     * @param frequency the frequency of the word, in the range [0..255].
     * @param shortcutTargets a list of shortcut targets for this word, or null.
     * @param isNotAWord true if this should not be considered a word (e.g. shortcut only)
     */
    public void add(final String word, final int frequency,
            final ArrayList<WeightedString> shortcutTargets, final boolean isNotAWord) {
        add(getCodePoints(word), frequency, shortcutTargets, isNotAWord,
                false /* isBlacklistEntry */);
    }

    /**
     * Helper method to add a blacklist entry as a string.
     *
     * @param word the word to add as a blacklist entry.
     * @param shortcutTargets a list of shortcut targets for this word, or null.
     * @param isNotAWord true if this is not a word for spellcheking purposes (shortcut only or so)
     */
    public void addBlacklistEntry(final String word,
            final ArrayList<WeightedString> shortcutTargets, final boolean isNotAWord) {
        add(getCodePoints(word), 0, shortcutTargets, isNotAWord, true /* isBlacklistEntry */);
    }

    /**
     * Sanity check for a node.
     *
     * This method checks that all CharGroups in a node are ordered as expected.
     * If they are, nothing happens. If they aren't, an exception is thrown.
     */
    private void checkStack(Node node) {
        ArrayList<CharGroup> stack = node.mData;
        int lastValue = -1;
        for (int i = 0; i < stack.size(); ++i) {
            int currentValue = stack.get(i).mChars[0];
            if (currentValue <= lastValue)
                throw new RuntimeException("Invalid stack");
            else
                lastValue = currentValue;
        }
    }

    /**
     * Helper method to add a new bigram to the dictionary.
     *
     * @param word1 the previous word of the context
     * @param word2 the next word of the context
     * @param frequency the bigram frequency
     */
    public void setBigram(final String word1, final String word2, final int frequency) {
        CharGroup charGroup = findWordInTree(mRoot, word1);
        if (charGroup != null) {
            final CharGroup charGroup2 = findWordInTree(mRoot, word2);
            if (charGroup2 == null) {
                add(getCodePoints(word2), 0, null, false /* isNotAWord */,
                        false /* isBlacklistEntry */);
                // The chargroup for the first word may have moved by the above insertion,
                // if word1 and word2 share a common stem that happens not to have been
                // a cutting point until now. In this case, we need to refresh charGroup.
                charGroup = findWordInTree(mRoot, word1);
            }
            charGroup.addBigram(word2, frequency);
        } else {
            throw new RuntimeException("First word of bigram not found");
        }
    }

    /**
     * Add a word to this dictionary.
     *
     * The shortcuts, if any, have to be in the dictionary already. If they aren't,
     * an exception is thrown.
     *
     * @param word the word, as an int array.
     * @param frequency the frequency of the word, in the range [0..255].
     * @param shortcutTargets an optional list of shortcut targets for this word (null if none).
     * @param isNotAWord true if this is not a word for spellcheking purposes (shortcut only or so)
     * @param isBlacklistEntry true if this is a blacklisted word, false otherwise
     */
    private void add(final int[] word, final int frequency,
            final ArrayList<WeightedString> shortcutTargets,
            final boolean isNotAWord, final boolean isBlacklistEntry) {
        assert(frequency >= 0 && frequency <= 255);
        if (word.length >= Constants.Dictionary.MAX_WORD_LENGTH) {
            MakedictLog.w("Ignoring a word that is too long: word.length = " + word.length);
            return;
        }

        Node currentNode = mRoot;
        int charIndex = 0;

        CharGroup currentGroup = null;
        int differentCharIndex = 0; // Set by the loop to the index of the char that differs
        int nodeIndex = findIndexOfChar(mRoot, word[charIndex]);
        while (CHARACTER_NOT_FOUND != nodeIndex) {
            currentGroup = currentNode.mData.get(nodeIndex);
            differentCharIndex = compareArrays(currentGroup.mChars, word, charIndex);
            if (ARRAYS_ARE_EQUAL != differentCharIndex
                    && differentCharIndex < currentGroup.mChars.length) break;
            if (null == currentGroup.mChildren) break;
            charIndex += currentGroup.mChars.length;
            if (charIndex >= word.length) break;
            currentNode = currentGroup.mChildren;
            nodeIndex = findIndexOfChar(currentNode, word[charIndex]);
        }

        if (-1 == nodeIndex) {
            // No node at this point to accept the word. Create one.
            final int insertionIndex = findInsertionIndex(currentNode, word[charIndex]);
            final CharGroup newGroup = new CharGroup(
                    Arrays.copyOfRange(word, charIndex, word.length),
                    shortcutTargets, null /* bigrams */, frequency, isNotAWord, isBlacklistEntry);
            currentNode.mData.add(insertionIndex, newGroup);
            if (DBG) checkStack(currentNode);
        } else {
            // There is a word with a common prefix.
            if (differentCharIndex == currentGroup.mChars.length) {
                if (charIndex + differentCharIndex >= word.length) {
                    // The new word is a prefix of an existing word, but the node on which it
                    // should end already exists as is. Since the old CharNode was not a terminal, 
                    // make it one by filling in its frequency and other attributes
                    currentGroup.update(frequency, shortcutTargets, null, isNotAWord,
                            isBlacklistEntry);
                } else {
                    // The new word matches the full old word and extends past it.
                    // We only have to create a new node and add it to the end of this.
                    final CharGroup newNode = new CharGroup(
                            Arrays.copyOfRange(word, charIndex + differentCharIndex, word.length),
                                    shortcutTargets, null /* bigrams */, frequency, isNotAWord,
                                    isBlacklistEntry);
                    currentGroup.mChildren = new Node();
                    currentGroup.mChildren.mData.add(newNode);
                }
            } else {
                if (0 == differentCharIndex) {
                    // Exact same word. Update the frequency if higher. This will also add the
                    // new shortcuts to the existing shortcut list if it already exists.
                    currentGroup.update(frequency, shortcutTargets, null,
                            currentGroup.mIsNotAWord && isNotAWord,
                            currentGroup.mIsBlacklistEntry || isBlacklistEntry);
                } else {
                    // Partial prefix match only. We have to replace the current node with a node
                    // containing the current prefix and create two new ones for the tails.
                    Node newChildren = new Node();
                    final CharGroup newOldWord = new CharGroup(
                            Arrays.copyOfRange(currentGroup.mChars, differentCharIndex,
                                    currentGroup.mChars.length), currentGroup.mShortcutTargets,
                            currentGroup.mBigrams, currentGroup.mFrequency,
                            currentGroup.mIsNotAWord, currentGroup.mIsBlacklistEntry,
                            currentGroup.mChildren);
                    newChildren.mData.add(newOldWord);

                    final CharGroup newParent;
                    if (charIndex + differentCharIndex >= word.length) {
                        newParent = new CharGroup(
                                Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
                                shortcutTargets, null /* bigrams */, frequency,
                                isNotAWord, isBlacklistEntry, newChildren);
                    } else {
                        newParent = new CharGroup(
                                Arrays.copyOfRange(currentGroup.mChars, 0, differentCharIndex),
                                null /* shortcutTargets */, null /* bigrams */, -1, 
                                false /* isNotAWord */, false /* isBlacklistEntry */, newChildren);
                        final CharGroup newWord = new CharGroup(Arrays.copyOfRange(word,
                                charIndex + differentCharIndex, word.length),
                                shortcutTargets, null /* bigrams */, frequency,
                                isNotAWord, isBlacklistEntry);
                        final int addIndex = word[charIndex + differentCharIndex]
                                > currentGroup.mChars[differentCharIndex] ? 1 : 0;
                        newChildren.mData.add(addIndex, newWord);
                    }
                    currentNode.mData.set(nodeIndex, newParent);
                }
                if (DBG) checkStack(currentNode);
            }
        }
    }

    private static int ARRAYS_ARE_EQUAL = 0;

    /**
     * Custom comparison of two int arrays taken to contain character codes.
     *
     * This method compares the two arrays passed as an argument in a lexicographic way,
     * with an offset in the dst string.
     * This method does NOT test for the first character. It is taken to be equal.
     * I repeat: this method starts the comparison at 1 <> dstOffset + 1.
     * The index where the strings differ is returned. ARRAYS_ARE_EQUAL = 0 is returned if the
     * strings are equal. This works BECAUSE we don't look at the first character.
     *
     * @param src the left-hand side string of the comparison.
     * @param dst the right-hand side string of the comparison.
     * @param dstOffset the offset in the right-hand side string.
     * @return the index at which the strings differ, or ARRAYS_ARE_EQUAL = 0 if they don't.
     */
    private static int compareArrays(final int[] src, final int[] dst, int dstOffset) {
        // We do NOT test the first char, because we come from a method that already
        // tested it.
        for (int i = 1; i < src.length; ++i) {
            if (dstOffset + i >= dst.length) return i;
            if (src[i] != dst[dstOffset + i]) return i;
        }
        if (dst.length > src.length) return src.length;
        return ARRAYS_ARE_EQUAL;
    }

    /**
     * Helper class that compares and sorts two chargroups according to their
     * first element only. I repeat: ONLY the first element is considered, the rest
     * is ignored.
     * This comparator imposes orderings that are inconsistent with equals.
     */
    static private final class CharGroupComparator implements java.util.Comparator<CharGroup> {
        @Override
        public int compare(CharGroup c1, CharGroup c2) {
            if (c1.mChars[0] == c2.mChars[0]) return 0;
            return c1.mChars[0] < c2.mChars[0] ? -1 : 1;
        }
    }
    final static private CharGroupComparator CHARGROUP_COMPARATOR = new CharGroupComparator();

    /**
     * Finds the insertion index of a character within a node.
     */
    private static int findInsertionIndex(final Node node, int character) {
        final ArrayList<CharGroup> data = node.mData;
        final CharGroup reference = new CharGroup(new int[] { character },
                null /* shortcutTargets */, null /* bigrams */, 0, false /* isNotAWord */,
                false /* isBlacklistEntry */);
        int result = Collections.binarySearch(data, reference, CHARGROUP_COMPARATOR);
        return result >= 0 ? result : -result - 1;
    }

    private static int CHARACTER_NOT_FOUND = -1;

    /**
     * Find the index of a char in a node, if it exists.
     *
     * @param node the node to search in.
     * @param character the character to search for.
     * @return the position of the character if it's there, or CHARACTER_NOT_FOUND = -1 else.
     */
    private static int findIndexOfChar(final Node node, int character) {
        final int insertionIndex = findInsertionIndex(node, character);
        if (node.mData.size() <= insertionIndex) return CHARACTER_NOT_FOUND;
        return character == node.mData.get(insertionIndex).mChars[0] ? insertionIndex
                : CHARACTER_NOT_FOUND;
    }

    /**
     * Helper method to find a word in a given branch.
     */
    @SuppressWarnings("unused")
    public static CharGroup findWordInTree(Node node, final String s) {
        int index = 0;
        final StringBuilder checker = DBG ? new StringBuilder() : null;

        CharGroup currentGroup;
        final int codePointCountInS = s.codePointCount(0, s.length());
        do {
            int indexOfGroup = findIndexOfChar(node, s.codePointAt(index));
            if (CHARACTER_NOT_FOUND == indexOfGroup) return null;
            currentGroup = node.mData.get(indexOfGroup);

            if (s.length() - index < currentGroup.mChars.length) return null;
            int newIndex = index;
            while (newIndex < s.length() && newIndex - index < currentGroup.mChars.length) {
                if (currentGroup.mChars[newIndex - index] != s.codePointAt(newIndex)) return null;
                newIndex++;
            }
            index = newIndex;

            if (DBG) checker.append(new String(currentGroup.mChars, 0, currentGroup.mChars.length));
            if (index < codePointCountInS) {
                node = currentGroup.mChildren;
            }
        } while (null != node && index < codePointCountInS);

        if (index < codePointCountInS) return null;
        if (!currentGroup.isTerminal()) return null;
        if (DBG && !s.equals(checker.toString())) return null;
        return currentGroup;
    }

    /**
     * Helper method to find out whether a word is in the dict or not.
     */
    public boolean hasWord(final String s) {
        if (null == s || "".equals(s)) {
            throw new RuntimeException("Can't search for a null or empty string");
        }
        return null != findWordInTree(mRoot, s);
    }

    /**
     * Recursively count the number of character groups in a given branch of the trie.
     *
     * @param node the parent node.
     * @return the number of char groups in all the branch under this node.
     */
    public static int countCharGroups(final Node node) {
        final int nodeSize = node.mData.size();
        int size = nodeSize;
        for (int i = nodeSize - 1; i >= 0; --i) {
            CharGroup group = node.mData.get(i);
            if (null != group.mChildren)
                size += countCharGroups(group.mChildren);
        }
        return size;
    }

    /**
     * Recursively count the number of nodes in a given branch of the trie.
     *
     * @param node the node to count.
     * @return the number of nodes in this branch.
     */
    public static int countNodes(final Node node) {
        int size = 1;
        for (int i = node.mData.size() - 1; i >= 0; --i) {
            CharGroup group = node.mData.get(i);
            if (null != group.mChildren)
                size += countNodes(group.mChildren);
        }
        return size;
    }

    // Recursively find out whether there are any bigrams.
    // This can be pretty expensive especially if there aren't any (we return as soon
    // as we find one, so it's much cheaper if there are bigrams)
    private static boolean hasBigramsInternal(final Node node) {
        if (null == node) return false;
        for (int i = node.mData.size() - 1; i >= 0; --i) {
            CharGroup group = node.mData.get(i);
            if (null != group.mBigrams) return true;
            if (hasBigramsInternal(group.mChildren)) return true;
        }
        return false;
    }

    /**
     * Finds out whether there are any bigrams in this dictionary.
     *
     * @return true if there is any bigram, false otherwise.
     */
    // TODO: this is expensive especially for large dictionaries without any bigram.
    // The up side is, this is always accurate and correct and uses no memory. We should
    // find a more efficient way of doing this, without compromising too much on memory
    // and ease of use.
    public boolean hasBigrams() {
        return hasBigramsInternal(mRoot);
    }

    // Historically, the tails of the words were going to be merged to save space.
    // However, that would prevent the code to search for a specific address in log(n)
    // time so this was abandoned.
    // The code is still of interest as it does add some compression to any dictionary
    // that has no need for attributes. Implementations that does not read attributes should be
    // able to read a dictionary with merged tails.
    // Also, the following code does support frequencies, as in, it will only merges
    // tails that share the same frequency. Though it would result in the above loss of
    // performance while searching by address, it is still technically possible to merge
    // tails that contain attributes, but this code does not take that into account - it does
    // not compare attributes and will merge terminals with different attributes regardless.
    public void mergeTails() {
        MakedictLog.i("Do not merge tails");
        return;

//        MakedictLog.i("Merging nodes. Number of nodes : " + countNodes(root));
//        MakedictLog.i("Number of groups : " + countCharGroups(root));
//
//        final HashMap<String, ArrayList<Node>> repository =
//                  new HashMap<String, ArrayList<Node>>();
//        mergeTailsInner(repository, root);
//
//        MakedictLog.i("Number of different pseudohashes : " + repository.size());
//        int size = 0;
//        for (ArrayList<Node> a : repository.values()) {
//            size += a.size();
//        }
//        MakedictLog.i("Number of nodes after merge : " + (1 + size));
//        MakedictLog.i("Recursively seen nodes : " + countNodes(root));
    }

    // The following methods are used by the deactivated mergeTails()
//   private static boolean isEqual(Node a, Node b) {
//       if (null == a && null == b) return true;
//       if (null == a || null == b) return false;
//       if (a.data.size() != b.data.size()) return false;
//       final int size = a.data.size();
//       for (int i = size - 1; i >= 0; --i) {
//           CharGroup aGroup = a.data.get(i);
//           CharGroup bGroup = b.data.get(i);
//           if (aGroup.frequency != bGroup.frequency) return false;
//           if (aGroup.alternates == null && bGroup.alternates != null) return false;
//           if (aGroup.alternates != null && !aGroup.equals(bGroup.alternates)) return false;
//           if (!Arrays.equals(aGroup.chars, bGroup.chars)) return false;
//           if (!isEqual(aGroup.children, bGroup.children)) return false;
//       }
//       return true;
//   }

//   static private HashMap<String, ArrayList<Node>> mergeTailsInner(
//           final HashMap<String, ArrayList<Node>> map, final Node node) {
//       final ArrayList<CharGroup> branches = node.data;
//       final int nodeSize = branches.size();
//       for (int i = 0; i < nodeSize; ++i) {
//           CharGroup group = branches.get(i);
//           if (null != group.children) {
//               String pseudoHash = getPseudoHash(group.children);
//               ArrayList<Node> similarList = map.get(pseudoHash);
//               if (null == similarList) {
//                   similarList = new ArrayList<Node>();
//                   map.put(pseudoHash, similarList);
//               }
//               boolean merged = false;
//               for (Node similar : similarList) {
//                   if (isEqual(group.children, similar)) {
//                       group.children = similar;
//                       merged = true;
//                       break;
//                   }
//               }
//               if (!merged) {
//                   similarList.add(group.children);
//               }
//               mergeTailsInner(map, group.children);
//           }
//       }
//       return map;
//   }

//  private static String getPseudoHash(final Node node) {
//      StringBuilder s = new StringBuilder();
//      for (CharGroup g : node.data) {
//          s.append(g.frequency);
//          for (int ch : g.chars) {
//              s.append(Character.toChars(ch));
//          }
//      }
//      return s.toString();
//  }

    /**
     * Iterator to walk through a dictionary.
     *
     * This is purely for convenience.
     */
    public static final class DictionaryIterator implements Iterator<Word> {
        private static final class Position {
            public Iterator<CharGroup> pos;
            public int length;
            public Position(ArrayList<CharGroup> groups) {
                pos = groups.iterator();
                length = 0;
            }
        }
        final StringBuilder mCurrentString;
        final LinkedList<Position> mPositions;

        public DictionaryIterator(ArrayList<CharGroup> root) {
            mCurrentString = new StringBuilder();
            mPositions = new LinkedList<Position>();
            final Position rootPos = new Position(root);
            mPositions.add(rootPos);
        }

        @Override
        public boolean hasNext() {
            for (Position p : mPositions) {
                if (p.pos.hasNext()) {
                    return true;
                }
            }
            return false;
        }

        @Override
        public Word next() {
            Position currentPos = mPositions.getLast();
            mCurrentString.setLength(mCurrentString.length() - currentPos.length);

            do {
                if (currentPos.pos.hasNext()) {
                    final CharGroup currentGroup = currentPos.pos.next();
                    currentPos.length = currentGroup.mChars.length;
                    for (int i : currentGroup.mChars)
                        mCurrentString.append(Character.toChars(i));
                    if (null != currentGroup.mChildren) {
                        currentPos = new Position(currentGroup.mChildren.mData);
                        mPositions.addLast(currentPos);
                    }
                    if (currentGroup.mFrequency >= 0)
                        return new Word(mCurrentString.toString(), currentGroup.mFrequency,
                                currentGroup.mShortcutTargets, currentGroup.mBigrams,
                                currentGroup.mIsNotAWord, currentGroup.mIsBlacklistEntry);
                } else {
                    mPositions.removeLast();
                    currentPos = mPositions.getLast();
                    mCurrentString.setLength(mCurrentString.length() - mPositions.getLast().length);
                }
            } while (true);
        }

        @Override
        public void remove() {
            throw new UnsupportedOperationException("Unsupported yet");
        }

    }

    /**
     * Method to return an iterator.
     *
     * This method enables Java's enhanced for loop. With this you can have a FusionDictionary x
     * and say : for (Word w : x) {}
     */
    @Override
    public Iterator<Word> iterator() {
        return new DictionaryIterator(mRoot.mData);
    }
}