1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
|
/*
* Copyright (C) 2013, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "suggest/policyimpl/dictionary/patricia_trie_policy.h"
#include "defines.h"
#include "suggest/core/dicnode/dic_node.h"
#include "suggest/core/dicnode/dic_node_vector.h"
#include "suggest/policyimpl/dictionary/patricia_trie_reading_utils.h"
#include "suggest/policyimpl/dictionary/utils/probability_utils.h"
namespace latinime {
void PatriciaTriePolicy::createAndGetAllChildNodes(const DicNode *const dicNode,
DicNodeVector *const childDicNodes) const {
if (!dicNode->hasChildren()) {
return;
}
int nextPos = dicNode->getChildrenPos();
if (nextPos < 0 || nextPos >= mDictBufferSize) {
AKLOGE("Children PtNode array position is invalid. pos: %d, dict size: %d",
nextPos, mDictBufferSize);
ASSERT(false);
return;
}
const int childCount = PatriciaTrieReadingUtils::getPtNodeArraySizeAndAdvancePosition(
mDictRoot, &nextPos);
for (int i = 0; i < childCount; i++) {
if (nextPos < 0 || nextPos >= mDictBufferSize) {
AKLOGE("Child PtNode position is invalid. pos: %d, dict size: %d, childCount: %d / %d",
nextPos, mDictBufferSize, i, childCount);
ASSERT(false);
return;
}
nextPos = createAndGetLeavingChildNode(dicNode, nextPos, childDicNodes);
}
}
// This retrieves code points and the probability of the word by its terminal position.
// Due to the fact that words are ordered in the dictionary in a strict breadth-first order,
// it is possible to check for this with advantageous complexity. For each node, we search
// for PtNodes with children and compare the children position with the position we look for.
// When we shoot the position we look for, it means the word we look for is in the children
// of the previous PtNode. The only tricky part is the fact that if we arrive at the end of a
// PtNode array with the last PtNode's children position still less than what we are searching for,
// we must descend the last PtNode's children (for example, if the word we are searching for starts
// with a z, it's the last PtNode of the root array, so all children addresses will be smaller
// than the position we look for, and we have to descend the z node).
/* Parameters :
* ptNodePos: the byte position of the terminal PtNode of the word we are searching for (this is
* what is stored as the "bigram position" in each bigram)
* outCodePoints: an array to write the found word, with MAX_WORD_LENGTH size.
* outUnigramProbability: a pointer to an int to write the probability into.
* Return value : the code point count, of 0 if the word was not found.
*/
// TODO: Split this function to be more readable
int PatriciaTriePolicy::getCodePointsAndProbabilityAndReturnCodePointCount(
const int ptNodePos, const int maxCodePointCount, int *const outCodePoints,
int *const outUnigramProbability) const {
int pos = getRootPosition();
int wordPos = 0;
// One iteration of the outer loop iterates through PtNode arrays. As stated above, we will
// only traverse nodes that are actually a part of the terminal we are searching, so each time
// we enter this loop we are one depth level further than last time.
// The only reason we count nodes is because we want to reduce the probability of infinite
// looping in case there is a bug. Since we know there is an upper bound to the depth we are
// supposed to traverse, it does not hurt to count iterations.
for (int loopCount = maxCodePointCount; loopCount > 0; --loopCount) {
int lastCandidatePtNodePos = 0;
// Let's loop through PtNodes in this PtNode array searching for either the terminal
// or one of its ascendants.
for (int ptNodeCount = PatriciaTrieReadingUtils::getPtNodeArraySizeAndAdvancePosition(
mDictRoot, &pos); ptNodeCount > 0; --ptNodeCount) {
const int startPos = pos;
const PatriciaTrieReadingUtils::NodeFlags flags =
PatriciaTrieReadingUtils::getFlagsAndAdvancePosition(mDictRoot, &pos);
const int character = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
mDictRoot, &pos);
if (ptNodePos == startPos) {
// We found the position. Copy the rest of the code points in the buffer and return
// the length.
outCodePoints[wordPos] = character;
if (PatriciaTrieReadingUtils::hasMultipleChars(flags)) {
int nextChar = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
mDictRoot, &pos);
// We count code points in order to avoid infinite loops if the file is broken
// or if there is some other bug
int charCount = maxCodePointCount;
while (NOT_A_CODE_POINT != nextChar && --charCount > 0) {
outCodePoints[++wordPos] = nextChar;
nextChar = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
mDictRoot, &pos);
}
}
*outUnigramProbability =
PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot,
&pos);
return ++wordPos;
}
// We need to skip past this PtNode, so skip any remaining code points after the
// first and possibly the probability.
if (PatriciaTrieReadingUtils::hasMultipleChars(flags)) {
PatriciaTrieReadingUtils::skipCharacters(mDictRoot, flags, MAX_WORD_LENGTH, &pos);
}
if (PatriciaTrieReadingUtils::isTerminal(flags)) {
PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot, &pos);
}
// The fact that this PtNode has children is very important. Since we already know
// that this PtNode does not match, if it has no children we know it is irrelevant
// to what we are searching for.
const bool hasChildren = PatriciaTrieReadingUtils::hasChildrenInFlags(flags);
// We will write in `found' whether we have passed the children position we are
// searching for. For example if we search for "beer", the children of b are less
// than the address we are searching for and the children of c are greater. When we
// come here for c, we realize this is too big, and that we should descend b.
bool found;
if (hasChildren) {
int currentPos = pos;
// Here comes the tricky part. First, read the children position.
const int childrenPos = PatriciaTrieReadingUtils
::readChildrenPositionAndAdvancePosition(mDictRoot, flags, ¤tPos);
if (childrenPos > ptNodePos) {
// If the children pos is greater than the position, it means the previous
// PtNode, which position is stored in lastCandidatePtNodePos, was the right
// one.
found = true;
} else if (1 >= ptNodeCount) {
// However if we are on the LAST PtNode of this array, and we have NOT shot the
// position we should descend THIS node. So we trick the lastCandidatePtNodePos
// so that we will descend this PtNode, not the previous one.
lastCandidatePtNodePos = startPos;
found = true;
} else {
// Else, we should continue looking.
found = false;
}
} else {
// Even if we don't have children here, we could still be on the last PtNode of /
// this array. If this is the case, we should descend the last PtNode that had
// children, and their position is already in lastCandidatePtNodePos.
found = (1 >= ptNodeCount);
}
if (found) {
// Okay, we found the PtNode we should descend. Its position is in
// the lastCandidatePtNodePos variable, so we just re-read it.
if (0 != lastCandidatePtNodePos) {
const PatriciaTrieReadingUtils::NodeFlags lastFlags =
PatriciaTrieReadingUtils::getFlagsAndAdvancePosition(
mDictRoot, &lastCandidatePtNodePos);
const int lastChar = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
mDictRoot, &lastCandidatePtNodePos);
// We copy all the characters in this PtNode to the buffer
outCodePoints[wordPos] = lastChar;
if (PatriciaTrieReadingUtils::hasMultipleChars(lastFlags)) {
int nextChar = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
mDictRoot, &lastCandidatePtNodePos);
int charCount = maxCodePointCount;
while (-1 != nextChar && --charCount > 0) {
outCodePoints[++wordPos] = nextChar;
nextChar = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
mDictRoot, &lastCandidatePtNodePos);
}
}
++wordPos;
// Now we only need to branch to the children address. Skip the probability if
// it's there, read pos, and break to resume the search at pos.
if (PatriciaTrieReadingUtils::isTerminal(lastFlags)) {
PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot,
&lastCandidatePtNodePos);
}
pos = PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(
mDictRoot, lastFlags, &lastCandidatePtNodePos);
break;
} else {
// Here is a little tricky part: we come here if we found out that all children
// addresses in this PtNode are bigger than the address we are searching for.
// Should we conclude the word is not in the dictionary? No! It could still be
// one of the remaining PtNodes in this array, so we have to keep looking in
// this array until we find it (or we realize it's not there either, in which
// case it's actually not in the dictionary). Pass the end of this PtNode,
// ready to start the next one.
if (PatriciaTrieReadingUtils::hasChildrenInFlags(flags)) {
PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(
mDictRoot, flags, &pos);
}
if (PatriciaTrieReadingUtils::hasShortcutTargets(flags)) {
mShortcutListPolicy.skipAllShortcuts(&pos);
}
if (PatriciaTrieReadingUtils::hasBigrams(flags)) {
mBigramListPolicy.skipAllBigrams(&pos);
}
}
} else {
// If we did not find it, we should record the last children address for the next
// iteration.
if (hasChildren) lastCandidatePtNodePos = startPos;
// Now skip the end of this PtNode (children pos and the attributes if any) so that
// our pos is after the end of this PtNode, at the start of the next one.
if (PatriciaTrieReadingUtils::hasChildrenInFlags(flags)) {
PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(
mDictRoot, flags, &pos);
}
if (PatriciaTrieReadingUtils::hasShortcutTargets(flags)) {
mShortcutListPolicy.skipAllShortcuts(&pos);
}
if (PatriciaTrieReadingUtils::hasBigrams(flags)) {
mBigramListPolicy.skipAllBigrams(&pos);
}
}
}
}
// If we have looked through all the PtNodes and found no match, the ptNodePos is
// not the position of a terminal in this dictionary.
return 0;
}
// This function gets the position of the terminal node of the exact matching word in the
// dictionary. If no match is found, it returns NOT_A_DICT_POS.
int PatriciaTriePolicy::getTerminalNodePositionOfWord(const int *const inWord,
const int length, const bool forceLowerCaseSearch) const {
int pos = getRootPosition();
int wordPos = 0;
while (true) {
// If we already traversed the tree further than the word is long, there means
// there was no match (or we would have found it).
if (wordPos >= length) return NOT_A_DICT_POS;
int ptNodeCount = PatriciaTrieReadingUtils::getPtNodeArraySizeAndAdvancePosition(mDictRoot,
&pos);
const int wChar = forceLowerCaseSearch
? CharUtils::toLowerCase(inWord[wordPos]) : inWord[wordPos];
while (true) {
// If there are no more PtNodes in this array, it means we could not
// find a matching character for this depth, therefore there is no match.
if (0 >= ptNodeCount) return NOT_A_DICT_POS;
const int ptNodePos = pos;
const PatriciaTrieReadingUtils::NodeFlags flags =
PatriciaTrieReadingUtils::getFlagsAndAdvancePosition(mDictRoot, &pos);
int character = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(mDictRoot,
&pos);
if (character == wChar) {
// This is the correct PtNode. Only one PtNode may start with the same char within
// a PtNode array, so either we found our match in this array, or there is
// no match and we can return NOT_A_DICT_POS. So we will check all the
// characters in this PtNode indeed does match.
if (PatriciaTrieReadingUtils::hasMultipleChars(flags)) {
character = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(mDictRoot,
&pos);
while (NOT_A_CODE_POINT != character) {
++wordPos;
// If we shoot the length of the word we search for, or if we find a single
// character that does not match, as explained above, it means the word is
// not in the dictionary (by virtue of this PtNode being the only one to
// match the word on the first character, but not matching the whole word).
if (wordPos >= length) return NOT_A_DICT_POS;
if (inWord[wordPos] != character) return NOT_A_DICT_POS;
character = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
mDictRoot, &pos);
}
}
// If we come here we know that so far, we do match. Either we are on a terminal
// and we match the length, in which case we found it, or we traverse children.
// If we don't match the length AND don't have children, then a word in the
// dictionary fully matches a prefix of the searched word but not the full word.
++wordPos;
if (PatriciaTrieReadingUtils::isTerminal(flags)) {
if (wordPos == length) {
return ptNodePos;
}
PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot, &pos);
}
if (!PatriciaTrieReadingUtils::hasChildrenInFlags(flags)) {
return NOT_A_DICT_POS;
}
// We have children and we are still shorter than the word we are searching for, so
// we need to traverse children. Put the pointer on the children position, and
// break
pos = PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(mDictRoot,
flags, &pos);
break;
} else {
// This PtNode does not match, so skip the remaining part and go to the next.
if (PatriciaTrieReadingUtils::hasMultipleChars(flags)) {
PatriciaTrieReadingUtils::skipCharacters(mDictRoot, flags, MAX_WORD_LENGTH,
&pos);
}
if (PatriciaTrieReadingUtils::isTerminal(flags)) {
PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot, &pos);
}
if (PatriciaTrieReadingUtils::hasChildrenInFlags(flags)) {
PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(mDictRoot,
flags, &pos);
}
if (PatriciaTrieReadingUtils::hasShortcutTargets(flags)) {
mShortcutListPolicy.skipAllShortcuts(&pos);
}
if (PatriciaTrieReadingUtils::hasBigrams(flags)) {
mBigramListPolicy.skipAllBigrams(&pos);
}
}
--ptNodeCount;
}
}
}
int PatriciaTriePolicy::getProbability(const int unigramProbability,
const int bigramProbability) const {
if (unigramProbability == NOT_A_PROBABILITY) {
return NOT_A_PROBABILITY;
} else if (bigramProbability == NOT_A_PROBABILITY) {
return ProbabilityUtils::backoff(unigramProbability);
} else {
return ProbabilityUtils::computeProbabilityForBigram(unigramProbability,
bigramProbability);
}
}
int PatriciaTriePolicy::getUnigramProbabilityOfPtNode(const int ptNodePos) const {
if (ptNodePos == NOT_A_DICT_POS) {
return NOT_A_PROBABILITY;
}
int pos = ptNodePos;
const PatriciaTrieReadingUtils::NodeFlags flags =
PatriciaTrieReadingUtils::getFlagsAndAdvancePosition(mDictRoot, &pos);
if (!PatriciaTrieReadingUtils::isTerminal(flags)) {
return NOT_A_PROBABILITY;
}
if (PatriciaTrieReadingUtils::isNotAWord(flags)
|| PatriciaTrieReadingUtils::isBlacklisted(flags)) {
// If this is not a word, or if it's a blacklisted entry, it should behave as
// having no probability outside of the suggestion process (where it should be used
// for shortcuts).
return NOT_A_PROBABILITY;
}
PatriciaTrieReadingUtils::skipCharacters(mDictRoot, flags, MAX_WORD_LENGTH, &pos);
return getProbability(PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(
mDictRoot, &pos), NOT_A_PROBABILITY);
}
int PatriciaTriePolicy::getShortcutPositionOfPtNode(const int ptNodePos) const {
if (ptNodePos == NOT_A_DICT_POS) {
return NOT_A_DICT_POS;
}
int pos = ptNodePos;
const PatriciaTrieReadingUtils::NodeFlags flags =
PatriciaTrieReadingUtils::getFlagsAndAdvancePosition(mDictRoot, &pos);
if (!PatriciaTrieReadingUtils::hasShortcutTargets(flags)) {
return NOT_A_DICT_POS;
}
PatriciaTrieReadingUtils::skipCharacters(mDictRoot, flags, MAX_WORD_LENGTH, &pos);
if (PatriciaTrieReadingUtils::isTerminal(flags)) {
PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot, &pos);
}
if (PatriciaTrieReadingUtils::hasChildrenInFlags(flags)) {
PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(mDictRoot, flags, &pos);
}
return pos;
}
int PatriciaTriePolicy::getBigramsPositionOfPtNode(const int ptNodePos) const {
if (ptNodePos == NOT_A_DICT_POS) {
return NOT_A_DICT_POS;
}
int pos = ptNodePos;
const PatriciaTrieReadingUtils::NodeFlags flags =
PatriciaTrieReadingUtils::getFlagsAndAdvancePosition(mDictRoot, &pos);
if (!PatriciaTrieReadingUtils::hasBigrams(flags)) {
return NOT_A_DICT_POS;
}
PatriciaTrieReadingUtils::skipCharacters(mDictRoot, flags, MAX_WORD_LENGTH, &pos);
if (PatriciaTrieReadingUtils::isTerminal(flags)) {
PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot, &pos);
}
if (PatriciaTrieReadingUtils::hasChildrenInFlags(flags)) {
PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(mDictRoot, flags, &pos);
}
if (PatriciaTrieReadingUtils::hasShortcutTargets(flags)) {
mShortcutListPolicy.skipAllShortcuts(&pos);;
}
return pos;
}
int PatriciaTriePolicy::createAndGetLeavingChildNode(const DicNode *const dicNode,
const int ptNodePos, DicNodeVector *childDicNodes) const {
int pos = ptNodePos;
const PatriciaTrieReadingUtils::NodeFlags flags =
PatriciaTrieReadingUtils::getFlagsAndAdvancePosition(mDictRoot, &pos);
int mergedNodeCodePoints[MAX_WORD_LENGTH];
const int mergedNodeCodePointCount = PatriciaTrieReadingUtils::getCharsAndAdvancePosition(
mDictRoot, flags, MAX_WORD_LENGTH, mergedNodeCodePoints, &pos);
const int probability = (PatriciaTrieReadingUtils::isTerminal(flags))?
PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot, &pos)
: NOT_A_PROBABILITY;
const int childrenPos = PatriciaTrieReadingUtils::hasChildrenInFlags(flags) ?
PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(
mDictRoot, flags, &pos) : NOT_A_DICT_POS;
if (PatriciaTrieReadingUtils::hasShortcutTargets(flags)) {
getShortcutsStructurePolicy()->skipAllShortcuts(&pos);
}
if (PatriciaTrieReadingUtils::hasBigrams(flags)) {
getBigramsStructurePolicy()->skipAllBigrams(&pos);
}
if (mergedNodeCodePointCount <= 0) {
AKLOGE("Empty PtNode is not allowed. Code point count: %d", mergedNodeCodePointCount);
ASSERT(false);
return pos;
}
childDicNodes->pushLeavingChild(dicNode, ptNodePos, childrenPos, probability,
PatriciaTrieReadingUtils::isTerminal(flags),
PatriciaTrieReadingUtils::hasChildrenInFlags(flags),
PatriciaTrieReadingUtils::isBlacklisted(flags) ||
PatriciaTrieReadingUtils::isNotAWord(flags),
mergedNodeCodePointCount, mergedNodeCodePoints);
return pos;
}
} // namespace latinime
|