aboutsummaryrefslogtreecommitdiffstats
path: root/native/src/unigram_dictionary.cpp
blob: 30fbaeae1f1a25c048caa010de55720120c3e5a1 (about) (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
/*
**
** Copyright 2010, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
**     http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/

#include <assert.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>

#define LOG_TAG "LatinIME: unigram_dictionary.cpp"

#include "basechars.h"
#include "char_utils.h"
#include "dictionary.h"
#include "unigram_dictionary.h"

namespace latinime {

const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] =
        { { 'a', 'e' },
        { 'o', 'e' },
        { 'u', 'e' } };

UnigramDictionary::UnigramDictionary(const unsigned char *dict, int typedLetterMultiplier,
        int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars,
        const bool isLatestDictVersion)
    : DICT(dict), MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords),
    MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion),
    TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier),
    ROOT_POS(isLatestDictVersion ? DICTIONARY_HEADER_SIZE : 0),
    BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(*mInputCodes)),
    MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) {
    if (DEBUG_DICT) LOGI("UnigramDictionary - constructor");
}

UnigramDictionary::~UnigramDictionary() {}

static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize,
        const int MAX_PROXIMITY_CHARS) {
    return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize;
}

bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const {

    // There can't be a digraph if we don't have at least 2 characters to examine
    if (i + 2 > codesSize) return false;

    // Search for the first char of some digraph
    int lastDigraphIndex = -1;
    const int thisChar = codes[i * MAX_PROXIMITY_CHARS];
    for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1;
            lastDigraphIndex >= 0; --lastDigraphIndex) {
        if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break;
    }
    // No match: return early
    if (lastDigraphIndex < 0) return false;

    // It's an interesting digraph if the second char matches too.
    return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS];
}

// Mostly the same arguments as the non-recursive version, except:
// codes is the original value. It points to the start of the work buffer, and gets passed as is.
// codesSize is the size of the user input (thus, it is the size of codesSrc).
// codesDest is the current point in the work buffer.
// codesSrc is the current point in the user-input, original, content-unmodified buffer.
// codesRemain is the remaining size in codesSrc.
void UnigramDictionary::getWordWithDigraphSuggestionsRec(const ProximityInfo *proximityInfo,
        const int *xcoordinates, const int* ycoordinates, const int *codesBuffer,
        const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain,
        const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) {

    if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) {
        for (int i = 0; i < codesRemain; ++i) {
            if (isDigraph(codesSrc, i, codesRemain)) {
                // Found a digraph. We will try both spellings. eg. the word is "pruefen"

                // Copy the word up to the first char of the digraph, then continue processing
                // on the remaining part of the word, skipping the second char of the digraph.
                // In our example, copy "pru" and continue running on "fen"
                // Make i the index of the second char of the digraph for simplicity. Forgetting
                // to do that results in an infinite recursion so take care!
                ++i;
                memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR);
                getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
                        codesBuffer, codesBufferSize, flags,
                        codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1,
                        currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords,
                        frequencies);

                // Copy the second char of the digraph in place, then continue processing on
                // the remaining part of the word.
                // In our example, after "pru" in the buffer copy the "e", and continue on "fen"
                memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS,
                        BYTES_IN_ONE_CHAR);
                getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates,
                        codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS,
                        codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS,
                        outWords, frequencies);
                return;
            }
        }
    }

    // If we come here, we hit the end of the word: let's check it against the dictionary.
    // In our example, we'll come here once for "prufen" and then once for "pruefen".
    // If the word contains several digraphs, we'll come it for the product of them.
    // eg. if the word is "ueberpruefen" we'll test, in order, against
    // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen".
    const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain;
    if (0 != remainingBytes)
        memcpy(codesDest, codesSrc, remainingBytes);

    getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
            (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies);
}

int UnigramDictionary::getSuggestions(const ProximityInfo *proximityInfo, const int *xcoordinates,
        const int *ycoordinates, const int *codes, const int codesSize, const int flags,
        unsigned short *outWords, int *frequencies) {

    if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags)
    { // Incrementally tune the word and try all possibilities
        int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)];
        getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer,
                codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies);
    } else { // Normal processing
        getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize,
                outWords, frequencies);
    }

    PROF_START(20);
    // Get the word count
    int suggestedWordsCount = 0;
    while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) {
        suggestedWordsCount++;
    }

    if (DEBUG_DICT) {
        LOGI("Returning %d words", suggestedWordsCount);
        LOGI("Next letters: ");
        for (int k = 0; k < NEXT_LETTERS_SIZE; k++) {
            if (mNextLettersFrequency[k] > 0) {
                LOGI("%c = %d,", k, mNextLettersFrequency[k]);
            }
        }
    }
    PROF_END(20);
    PROF_CLOSE;
    return suggestedWordsCount;
}

void UnigramDictionary::getWordSuggestions(const ProximityInfo *proximityInfo,
        const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize,
        unsigned short *outWords, int *frequencies) {

    PROF_OPEN;
    PROF_START(0);
    initSuggestions(codes, codesSize, outWords, frequencies);
    if (DEBUG_DICT) assert(codesSize == mInputLength);

    const int MAX_DEPTH = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH);
    PROF_END(0);

    PROF_START(1);
    getSuggestionCandidates(-1, -1, -1, mNextLettersFrequency, NEXT_LETTERS_SIZE, MAX_DEPTH);
    PROF_END(1);

    PROF_START(2);
    // Suggestion with missing character
    if (SUGGEST_WORDS_WITH_MISSING_CHARACTER) {
        for (int i = 0; i < codesSize; ++i) {
            if (DEBUG_DICT) LOGI("--- Suggest missing characters %d", i);
            getSuggestionCandidates(i, -1, -1, NULL, 0, MAX_DEPTH);
        }
    }
    PROF_END(2);

    PROF_START(3);
    // Suggestion with excessive character
    if (SUGGEST_WORDS_WITH_EXCESSIVE_CHARACTER
            && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_EXCESSIVE_CHARACTER_SUGGESTION) {
        for (int i = 0; i < codesSize; ++i) {
            if (DEBUG_DICT) LOGI("--- Suggest excessive characters %d", i);
            getSuggestionCandidates(-1, i, -1, NULL, 0, MAX_DEPTH);
        }
    }
    PROF_END(3);

    PROF_START(4);
    // Suggestion with transposed characters
    // Only suggest words that length is mInputLength
    if (SUGGEST_WORDS_WITH_TRANSPOSED_CHARACTERS) {
        for (int i = 0; i < codesSize; ++i) {
            if (DEBUG_DICT) LOGI("--- Suggest transposed characters %d", i);
            getSuggestionCandidates(-1, -1, i, NULL, 0, mInputLength - 1);
        }
    }
    PROF_END(4);

    PROF_START(5);
    // Suggestions with missing space
    if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER
            && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) {
        for (int i = 1; i < codesSize; ++i) {
            if (DEBUG_DICT) LOGI("--- Suggest missing space characters %d", i);
            getMissingSpaceWords(mInputLength, i);
        }
    }
    PROF_END(5);

    PROF_START(6);
    if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY) {
        // The first and last "mistyped spaces" are taken care of by excessive character handling
        for (int i = 1; i < codesSize - 1; ++i) {
            if (DEBUG_DICT) LOGI("--- Suggest words with proximity space %d", i);
            const int x = xcoordinates[i];
            const int y = ycoordinates[i];
            if (DEBUG_PROXIMITY_INFO)
                LOGI("Input[%d] x = %d, y = %d, has space proximity = %d",
                        i, x, y, proximityInfo->hasSpaceProximity(x, y));
            if (proximityInfo->hasSpaceProximity(x, y)) {
                getMistypedSpaceWords(mInputLength, i);
            }
        }
    }
    PROF_END(6);
}

void UnigramDictionary::initSuggestions(const int *codes, const int codesSize,
        unsigned short *outWords, int *frequencies) {
    if (DEBUG_DICT) LOGI("initSuggest");
    mFrequencies = frequencies;
    mOutputChars = outWords;
    mInputCodes = codes;
    mInputLength = codesSize;
    mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2;
}

void UnigramDictionary::registerNextLetter(
        unsigned short c, int *nextLetters, int nextLettersSize) {
    if (c < nextLettersSize) {
        nextLetters[c]++;
    }
}

// TODO: We need to optimize addWord by using STL or something
bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) {
    word[length] = 0;
    if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) {
        char s[length + 1];
        for (int i = 0; i <= length; i++) s[i] = word[i];
        LOGI("Found word = %s, freq = %d", s, frequency);
    }
    if (length > MAX_WORD_LENGTH) {
        if (DEBUG_DICT) LOGI("Exceeded max word length.");
        return false;
    }

    // Find the right insertion point
    int insertAt = 0;
    while (insertAt < MAX_WORDS) {
        if (frequency > mFrequencies[insertAt] || (mFrequencies[insertAt] == frequency
                && length < Dictionary::wideStrLen(mOutputChars + insertAt * MAX_WORD_LENGTH))) {
            break;
        }
        insertAt++;
    }
    if (insertAt < MAX_WORDS) {
        if (DEBUG_DICT) {
            char s[length + 1];
            for (int i = 0; i <= length; i++) s[i] = word[i];
            LOGI("Added word = %s, freq = %d", s, frequency);
        }
        memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]),
               (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]),
               (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0]));
        mFrequencies[insertAt] = frequency;
        memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short),
               (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short),
               (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH);
        unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH;
        while (length--) {
            *dest++ = *word++;
        }
        *dest = 0; // NULL terminate
        if (DEBUG_DICT) LOGI("Added word at %d", insertAt);
        return true;
    }
    return false;
}

unsigned short UnigramDictionary::toBaseLowerCase(unsigned short c) {
    if (c < sizeof(BASE_CHARS) / sizeof(BASE_CHARS[0])) {
        c = BASE_CHARS[c];
    }
    if (c >='A' && c <= 'Z') {
        c |= 32;
    } else if (c > 127) {
        c = latin_tolower(c);
    }
    return c;
}

bool UnigramDictionary::sameAsTyped(unsigned short *word, int length) {
    if (length != mInputLength) {
        return false;
    }
    const int *inputCodes = mInputCodes;
    while (length--) {
        if ((unsigned int) *inputCodes != (unsigned int) *word) {
            return false;
        }
        inputCodes += MAX_PROXIMITY_CHARS;
        word++;
    }
    return true;
}

static const char QUOTE = '\'';
static const char SPACE = ' ';

void UnigramDictionary::getSuggestionCandidates(const int skipPos,
        const int excessivePos, const int transposedPos, int *nextLetters,
        const int nextLettersSize, const int maxDepth) {
    if (DEBUG_DICT) {
        LOGI("getSuggestionCandidates %d", maxDepth);
        assert(transposedPos + 1 < mInputLength);
        assert(excessivePos < mInputLength);
        assert(missingPos < mInputLength);
    }
    int rootPosition = ROOT_POS;
    // Get the number of child of root, then increment the position
    int childCount = Dictionary::getCount(DICT, &rootPosition);
    int depth = 0;

    mStackChildCount[0] = childCount;
    mStackTraverseAll[0] = (mInputLength <= 0);
    mStackNodeFreq[0] = 1;
    mStackInputIndex[0] = 0;
    mStackDiffs[0] = 0;
    mStackSiblingPos[0] = rootPosition;

    // Depth first search
    while (depth >= 0) {
        if (mStackChildCount[depth] > 0) {
            --mStackChildCount[depth];
            bool traverseAllNodes = mStackTraverseAll[depth];
            int matchWeight = mStackNodeFreq[depth];
            int inputIndex = mStackInputIndex[depth];
            int diffs = mStackDiffs[depth];
            int siblingPos = mStackSiblingPos[depth];
            int firstChildPos;
            // depth will never be greater than maxDepth because in that case,
            // needsToTraverseChildrenNodes should be false
            const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth,
                    maxDepth, traverseAllNodes, matchWeight, inputIndex, diffs, skipPos,
                    excessivePos, transposedPos, nextLetters, nextLettersSize, &childCount,
                    &firstChildPos, &traverseAllNodes, &matchWeight, &inputIndex, &diffs,
                    &siblingPos);
            // Update next sibling pos
            mStackSiblingPos[depth] = siblingPos;
            if (needsToTraverseChildrenNodes) {
                // Goes to child node
                ++depth;
                mStackChildCount[depth] = childCount;
                mStackTraverseAll[depth] = traverseAllNodes;
                mStackNodeFreq[depth] = matchWeight;
                mStackInputIndex[depth] = inputIndex;
                mStackDiffs[depth] = diffs;
                mStackSiblingPos[depth] = firstChildPos;
            }
        } else {
            // Goes to parent sibling node
            --depth;
        }
    }
}

inline static void multiplyRate(const int rate, int *freq) {
    if (rate > 1000000) {
        *freq = (*freq / 100) * rate;
    } else {
        *freq = *freq * rate / 100;
    }
}

bool UnigramDictionary::getSplitTwoWordsSuggestion(const int inputLength,
        const int firstWordStartPos, const int firstWordLength, const int secondWordStartPos,
        const int secondWordLength) {
    if (inputLength >= MAX_WORD_LENGTH) return false;
    if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos
            || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength)
        return false;
    const int newWordLength = firstWordLength + secondWordLength + 1;
    // Allocating variable length array on stack
    unsigned short word[newWordLength];
    const int firstFreq = getBestWordFreq(firstWordStartPos, firstWordLength, mWord);
    if (DEBUG_DICT) LOGI("First freq: %d", firstFreq);
    if (firstFreq <= 0) return false;

    for (int i = 0; i < firstWordLength; ++i) {
        word[i] = mWord[i];
    }

    const int secondFreq = getBestWordFreq(secondWordStartPos, secondWordLength, mWord);
    if (DEBUG_DICT) LOGI("Second  freq:  %d", secondFreq);
    if (secondFreq <= 0) return false;

    word[firstWordLength] = SPACE;
    for (int i = (firstWordLength + 1); i < newWordLength; ++i) {
        word[i] = mWord[i - firstWordLength - 1];
    }

    int pairFreq = ((firstFreq + secondFreq) / 2);
    for (int i = 0; i < inputLength; ++i) pairFreq *= TYPED_LETTER_MULTIPLIER;
    multiplyRate(WORDS_WITH_MISSING_SPACE_CHARACTER_DEMOTION_RATE, &pairFreq);
    addWord(word, newWordLength, pairFreq);
    return true;
}

bool UnigramDictionary::getMissingSpaceWords(const int inputLength, const int missingSpacePos) {
    return getSplitTwoWordsSuggestion(
            inputLength, 0, missingSpacePos, missingSpacePos, inputLength - missingSpacePos);
}

bool UnigramDictionary::getMistypedSpaceWords(const int inputLength, const int spaceProximityPos) {
    return getSplitTwoWordsSuggestion(
            inputLength, 0, spaceProximityPos, spaceProximityPos + 1,
            inputLength - spaceProximityPos - 1);
}

// Keep this for comparing spec to new getWords
void UnigramDictionary::getWordsOld(const int initialPos, const int inputLength, const int skipPos,
        const int excessivePos, const int transposedPos,int *nextLetters,
        const int nextLettersSize) {
    int initialPosition = initialPos;
    const int count = Dictionary::getCount(DICT, &initialPosition);
    getWordsRec(count, initialPosition, 0,
            min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH),
            mInputLength <= 0, 1, 0, 0, skipPos, excessivePos, transposedPos, nextLetters,
            nextLettersSize);
}

void UnigramDictionary::getWordsRec(const int childrenCount, const int pos, const int depth,
        const int maxDepth, const bool traverseAllNodes, const int matchWeight,
        const int inputIndex, const int diffs, const int skipPos, const int excessivePos,
        const int transposedPos, int *nextLetters, const int nextLettersSize) {
    int siblingPos = pos;
    for (int i = 0; i < childrenCount; ++i) {
        int newCount;
        int newChildPosition;
        const int newDepth = depth + 1;
        bool newTraverseAllNodes;
        int newMatchRate;
        int newInputIndex;
        int newDiffs;
        int newSiblingPos;
        const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, depth, maxDepth,
                traverseAllNodes, matchWeight, inputIndex, diffs,
                skipPos, excessivePos, transposedPos,
                nextLetters, nextLettersSize,
                &newCount, &newChildPosition, &newTraverseAllNodes, &newMatchRate,
                &newInputIndex, &newDiffs, &newSiblingPos);
        siblingPos = newSiblingPos;

        if (needsToTraverseChildrenNodes) {
            getWordsRec(newCount, newChildPosition, newDepth, maxDepth, newTraverseAllNodes,
                    newMatchRate, newInputIndex, newDiffs, skipPos, excessivePos, transposedPos,
                    nextLetters, nextLettersSize);
        }
    }
}

static const int TWO_31ST_DIV_255 = S_INT_MAX / 255;
static inline int capped255MultForFullMatchAccentsOrCapitalizationDifference(const int num) {
    return (num < TWO_31ST_DIV_255 ? 255 * num : S_INT_MAX);
}
inline int UnigramDictionary::calculateFinalFreq(const int inputIndex, const int depth,
        const int matchWeight, const int skipPos, const int excessivePos, const int transposedPos,
        const int freq, const bool sameLength) const {
    // TODO: Demote by edit distance
    int finalFreq = freq * matchWeight;
    if (skipPos >= 0) {
        if (mInputLength >= 3) {
            multiplyRate(WORDS_WITH_MISSING_CHARACTER_DEMOTION_RATE *
                    (mInputLength - 2) / (mInputLength - 1), &finalFreq);
        } else {
            finalFreq = 0;
        }
    }
    if (transposedPos >= 0) multiplyRate(
            WORDS_WITH_TRANSPOSED_CHARACTERS_DEMOTION_RATE, &finalFreq);
    if (excessivePos >= 0) {
        multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_DEMOTION_RATE, &finalFreq);
        if (!existsAdjacentProximityChars(inputIndex, mInputLength)) {
            multiplyRate(WORDS_WITH_EXCESSIVE_CHARACTER_OUT_OF_PROXIMITY_DEMOTION_RATE, &finalFreq);
        }
    }
    int lengthFreq = TYPED_LETTER_MULTIPLIER;
    for (int i = 0; i < depth; ++i) lengthFreq *= TYPED_LETTER_MULTIPLIER;
    if (lengthFreq == matchWeight) {
        if (depth > 1) {
            if (DEBUG_DICT) LOGI("Found full matched word.");
            multiplyRate(FULL_MATCHED_WORDS_PROMOTION_RATE, &finalFreq);
        }
        if (sameLength && transposedPos < 0 && skipPos < 0 && excessivePos < 0) {
            finalFreq = capped255MultForFullMatchAccentsOrCapitalizationDifference(finalFreq);
        }
    }
    if (sameLength) finalFreq *= FULL_WORD_MULTIPLIER;
    return finalFreq;
}

inline void UnigramDictionary::onTerminalWhenUserTypedLengthIsGreaterThanInputLength(
        unsigned short *word, const int inputIndex, const int depth, const int matchWeight,
        int *nextLetters, const int nextLettersSize, const int skipPos, const int excessivePos,
        const int transposedPos, const int freq) {
    const int finalFreq = calculateFinalFreq(inputIndex, depth, matchWeight, skipPos, excessivePos,
            transposedPos, freq, false);
    if (depth >= MIN_SUGGEST_DEPTH) addWord(word, depth + 1, finalFreq);
    if (depth >= mInputLength && skipPos < 0) {
        registerNextLetter(mWord[mInputLength], nextLetters, nextLettersSize);
    }
}

inline void UnigramDictionary::onTerminalWhenUserTypedLengthIsSameAsInputLength(
        unsigned short *word, const int inputIndex, const int depth, const int matchWeight,
        const int skipPos, const int excessivePos, const int transposedPos, const int freq) {
    if (sameAsTyped(word, depth + 1)) return;
    const int finalFreq = calculateFinalFreq(inputIndex, depth, matchWeight, skipPos,
            excessivePos, transposedPos, freq, true);
    // Proximity collection will promote a word of the same length as what user typed.
    if (depth >= MIN_SUGGEST_DEPTH) addWord(word, depth + 1, finalFreq);
}

inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c,
        const int inputIndex, const int skipPos, const int depth) {
    const unsigned short userTypedChar = getInputCharsAt(inputIndex)[0];
    // Skip the ' or other letter and continue deeper
    return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth;
}

inline bool UnigramDictionary::existsAdjacentProximityChars(const int inputIndex,
        const int inputLength) const {
    if (inputIndex < 0 || inputIndex >= inputLength) return false;
    const int currentChar = *getInputCharsAt(inputIndex);
    const int leftIndex = inputIndex - 1;
    if (leftIndex >= 0) {
        const int *leftChars = getInputCharsAt(leftIndex);
        int i = 0;
        while (leftChars[i] > 0 && i < MAX_PROXIMITY_CHARS) {
            if (leftChars[i++] == currentChar) return true;
        }
    }
    const int rightIndex = inputIndex + 1;
    if (rightIndex < inputLength) {
        const int *rightChars = getInputCharsAt(rightIndex);
        int i = 0;
        while (rightChars[i] > 0 && i < MAX_PROXIMITY_CHARS) {
            if (rightChars[i++] == currentChar) return true;
        }
    }
    return false;
}


// In the following function, c is the current character of the dictionary word
// currently examined.
// currentChars is an array containing the keys close to the character the
// user actually typed at the same position. We want to see if c is in it: if so,
// then the word contains at that position a character close to what the user
// typed.
// What the user typed is actually the first character of the array.
// Notice : accented characters do not have a proximity list, so they are alone
// in their list. The non-accented version of the character should be considered
// "close", but not the other keys close to the non-accented version.
inline UnigramDictionary::ProximityType UnigramDictionary::getMatchedProximityId(
        const int *currentChars, const unsigned short c, const int skipPos,
        const int excessivePos, const int transposedPos) {
    const unsigned short baseLowerC = toBaseLowerCase(c);

    // The first char in the array is what user typed. If it matches right away,
    // that means the user typed that same char for this pos.
    if (currentChars[0] == baseLowerC || currentChars[0] == c)
        return SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR;

    // If one of those is true, we should not check for close characters at all.
    if (skipPos >= 0 || excessivePos >= 0 || transposedPos >= 0)
        return UNRELATED_CHAR;

    // If the non-accented, lowercased version of that first character matches c,
    // then we have a non-accented version of the accented character the user
    // typed. Treat it as a close char.
    if (toBaseLowerCase(currentChars[0]) == baseLowerC)
        return NEAR_PROXIMITY_CHAR;

    // Not an exact nor an accent-alike match: search the list of close keys
    int j = 1;
    while (currentChars[j] > 0 && j < MAX_PROXIMITY_CHARS) {
        const bool matched = (currentChars[j] == baseLowerC || currentChars[j] == c);
        if (matched) return NEAR_PROXIMITY_CHAR;
        ++j;
    }

    // Was not included, signal this as an unrelated character.
    return UNRELATED_CHAR;
}

inline bool UnigramDictionary::processCurrentNode(const int pos, const int depth,
        const int maxDepth, const bool traverseAllNodes, int matchWeight, int inputIndex,
        const int diffs, const int skipPos, const int excessivePos, const int transposedPos,
        int *nextLetters, const int nextLettersSize, int *newCount, int *newChildPosition,
        bool *newTraverseAllNodes, int *newMatchRate, int *newInputIndex, int *newDiffs,
        int *nextSiblingPosition) {
    if (DEBUG_DICT) {
        int inputCount = 0;
        if (skipPos >= 0) ++inputCount;
        if (excessivePos >= 0) ++inputCount;
        if (transposedPos >= 0) ++inputCount;
        assert(inputCount <= 1);
    }
    unsigned short c;
    int childPosition;
    bool terminal;
    int freq;
    bool isSameAsUserTypedLength = false;

    if (excessivePos == depth && inputIndex < mInputLength - 1) ++inputIndex;

    *nextSiblingPosition = Dictionary::setDictionaryValues(DICT, IS_LATEST_DICT_VERSION, pos, &c,
            &childPosition, &terminal, &freq);

    const bool needsToTraverseChildrenNodes = childPosition != 0;

    // If we are only doing traverseAllNodes, no need to look at the typed characters.
    if (traverseAllNodes || needsToSkipCurrentNode(c, inputIndex, skipPos, depth)) {
        mWord[depth] = c;
        if (traverseAllNodes && terminal) {
            onTerminalWhenUserTypedLengthIsGreaterThanInputLength(mWord, inputIndex, depth,
                    matchWeight, nextLetters, nextLettersSize, skipPos, excessivePos, transposedPos,
                    freq);
        }
        if (!needsToTraverseChildrenNodes) return false;
        *newTraverseAllNodes = traverseAllNodes;
        *newMatchRate = matchWeight;
        *newDiffs = diffs;
        *newInputIndex = inputIndex;
    } else {
        const int *currentChars = getInputCharsAt(inputIndex);

        if (transposedPos >= 0) {
            if (inputIndex == transposedPos) currentChars += MAX_PROXIMITY_CHARS;
            if (inputIndex == (transposedPos + 1)) currentChars -= MAX_PROXIMITY_CHARS;
        }

        int matchedProximityCharId = getMatchedProximityId(currentChars, c, skipPos, excessivePos,
                transposedPos);
        if (UNRELATED_CHAR == matchedProximityCharId) return false;
        mWord[depth] = c;
        // If inputIndex is greater than mInputLength, that means there is no
        // proximity chars. So, we don't need to check proximity.
        if (SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) {
            matchWeight = matchWeight * TYPED_LETTER_MULTIPLIER;
        }
        bool isSameAsUserTypedLength = mInputLength == inputIndex + 1
                || (excessivePos == mInputLength - 1 && inputIndex == mInputLength - 2);
        if (isSameAsUserTypedLength && terminal) {
            onTerminalWhenUserTypedLengthIsSameAsInputLength(mWord, inputIndex, depth, matchWeight,
                    skipPos, excessivePos, transposedPos, freq);
        }
        if (!needsToTraverseChildrenNodes) return false;
        // Start traversing all nodes after the index exceeds the user typed length
        *newTraverseAllNodes = isSameAsUserTypedLength;
        *newMatchRate = matchWeight;
        *newDiffs = diffs + ((NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0);
        *newInputIndex = inputIndex + 1;
    }
    // Optimization: Prune out words that are too long compared to how much was typed.
    if (depth >= maxDepth || *newDiffs > mMaxEditDistance) {
        return false;
    }

    // If inputIndex is greater than mInputLength, that means there are no proximity chars.
    // TODO: Check if this can be isSameAsUserTypedLength only.
    if (isSameAsUserTypedLength || mInputLength <= *newInputIndex) {
        *newTraverseAllNodes = true;
    }
    // get the count of nodes and increment childAddress.
    *newCount = Dictionary::getCount(DICT, &childPosition);
    *newChildPosition = childPosition;
    if (DEBUG_DICT) assert(needsToTraverseChildrenNodes);
    return needsToTraverseChildrenNodes;
}

inline int UnigramDictionary::getBestWordFreq(const int startInputIndex, const int inputLength,
        unsigned short *word) {
    int pos = ROOT_POS;
    int count = Dictionary::getCount(DICT, &pos);
    int maxFreq = 0;
    int depth = 0;
    unsigned short newWord[MAX_WORD_LENGTH_INTERNAL];
    bool terminal = false;

    mStackChildCount[0] = count;
    mStackSiblingPos[0] = pos;

    while (depth >= 0) {
        if (mStackChildCount[depth] > 0) {
            --mStackChildCount[depth];
            int firstChildPos;
            int newFreq;
            int siblingPos = mStackSiblingPos[depth];
            const bool needsToTraverseChildrenNodes = processCurrentNodeForExactMatch(siblingPos,
                    startInputIndex, depth, newWord, &firstChildPos, &count, &terminal, &newFreq,
                    &siblingPos);
            mStackSiblingPos[depth] = siblingPos;
            if (depth == (inputLength - 1)) {
                // Traverse sibling node
                if (terminal) {
                    if (newFreq > maxFreq) {
                        for (int i = 0; i < inputLength; ++i) word[i] = newWord[i];
                        if (DEBUG_DICT && DEBUG_NODE) {
                            char s[inputLength + 1];
                            for (int i = 0; i < inputLength; ++i) s[i] = word[i];
                            s[inputLength] = 0;
                            LOGI("New missing space word found: %d > %d (%s), %d, %d",
                                    newFreq, maxFreq, s, inputLength, depth);
                        }
                        maxFreq = newFreq;
                    }
                }
            } else if (needsToTraverseChildrenNodes) {
                // Traverse children nodes
                ++depth;
                mStackChildCount[depth] = count;
                mStackSiblingPos[depth] = firstChildPos;
            }
        } else {
            // Traverse parent node
            --depth;
        }
    }

    word[inputLength] = 0;
    return maxFreq;
}

inline bool UnigramDictionary::processCurrentNodeForExactMatch(const int firstChildPos,
        const int startInputIndex, const int depth, unsigned short *word, int *newChildPosition,
        int *newCount, bool *newTerminal, int *newFreq, int *siblingPos) {
    const int inputIndex = startInputIndex + depth;
    const int *currentChars = getInputCharsAt(inputIndex);
    unsigned short c;
    *siblingPos = Dictionary::setDictionaryValues(DICT, IS_LATEST_DICT_VERSION, firstChildPos, &c,
            newChildPosition, newTerminal, newFreq);
    const unsigned int inputC = currentChars[0];
    if (DEBUG_DICT) assert(inputC <= U_SHORT_MAX);
    const unsigned short baseLowerC = toBaseLowerCase(c);
    const bool matched = (inputC == baseLowerC || inputC == c);
    const bool hasChild = *newChildPosition != 0;
    if (matched) {
        word[depth] = c;
        if (DEBUG_DICT && DEBUG_NODE) {
            LOGI("Node(%c, %c)<%d>, %d, %d", inputC, c, matched, hasChild, *newFreq);
            if (*newTerminal) LOGI("Terminal %d", *newFreq);
        }
        if (hasChild) {
            *newCount = Dictionary::getCount(DICT, newChildPosition);
            return true;
        } else {
            return false;
        }
    } else {
        // If this node is not user typed character, this method treats this word as unmatched.
        // Thus newTerminal shouldn't be true.
        *newTerminal = false;
        return false;
    }
}
} // namespace latinime